1. Given the following transition and output tables, produce their Moore machines
 (a)
 \[
 \begin{array}{c|cc|c}
 \text{state} & a & b & \text{Output} \\
 \hline
 q_0 & q_0 & q_1 & 1 \\
 q_1 & q_0 & q_2 & 0 \\
 q_2 & q_2 & q_2 & 1 \\
 q_3 & q_1 & q_1 & 0 \\
 \end{array}
 \]
 (b)
 \[
 \begin{array}{c|cc|c}
 \text{state} & a & b & \text{Output} \\
 \hline
 q_0 & q_3 & q_2 & 0 \\
 q_1 & q_1 & q_0 & 0 \\
 q_2 & q_2 & q_3 & 1 \\
 q_3 & q_0 & q_1 & 0 \\
 \end{array}
 \]

2. Given the following Moore machines, produce their transition and output tables
 (a)
 (b)

3. Convert the above Moore machines to Mealy machines

4. Convert the following Mealy machines to a Moore machine
 (a)
 (b)

5. Design a machine to perform a parity check on the input string. The output of the string ends in 1 if the total number of 1-bits in the input is odd and 0 if the total number of 1-bits is even. Did you choose a Mealy or Moore machine? Why?