CSCI 340: Computational Models

Minsky’s Theorem

Chapter 21

Department of Computer Science
The Two-Stack PDA

- Turing machines never seemed like a natural extension — comparing FAs to PDAs
- There is no such extension between PDAs and TMs
- **Insight:** the addition of a PUSHDOWN STACK made a considerable improvement in the power of an FA
- **Idea:** What would happen if we add another PUSHDOWN STACK to a PDA? or 3? or 70?
Definition

- A **two-pushdown stack machine**, denoted 2PDA, is like a PDA except that it has two pushdown stacks
 1. STACK₁
 2. STACK₂
- When we push a character, we must indicate which stack we are PUSHing onto. We do this by renaming PUSH to PUSH₁ and introduce a PUSH₂ state.
- When we pop a character from a stack, we need to indicate which stack we are POPing from. We do this by renaming POP to POP₁ and introduce a POP₂ state.
- We also will insist that 2PDAs are **deterministic**
2PDA Example

START

READ₁

PUSH₁ a

b

a

PUSH₂ b

POP₁

a

a

a

b

POP₂

Δ

POP₁

Δ

Δ

POP₂

ACCEPT

READ₂

READ₃

a

b
Theorem

$2PDA = TM$

In other words, any language accepted by a 2PDA can be accepted by some TM and any language accepted by a TM can be accepted by some 2PDA.

Proof.

Part 1 — Modeling a 2PDA on a TM

- A 2PDA has three locations where it can store information:
 1. INPUT TAPE
 2. STACK$_1$
 3. STACK$_2$

- A TM has one location where it can store information: the TAPE
- Model the TAPE to store INPUT TAPE, STACK$_1$, and STACK$_2$

(continued...)
Proof.

• Assume # and $ are symbols not part of Σ or Γ
• Store on the TAPE the following:

 \[
 \text{INPUT TAPE} \quad \# \quad \text{STACK}_1 \quad \$ \quad \text{STACK}_2
 \]
• Always have the TAPE HEAD point at the # after any operation
• Simulating READ

 1. Move the TAPE HEAD to the left and find the rightmost “front” Δ
 2. Move one to the right to find the next input letter
 3. If this character is #, the input has been exhausted
 4. Otherwise, change this character into Δ
 5. Branch according to what was read. In each branch, move down to the #, then start simulating the next state

(continued...)
Proof.

• Simulating POP₁ and POP₂
 • Move to $ if POP₂; otherwise stay at #
 • Move to the right. If $ is read, then STACK₁ is empty
 • Else, we are removing the current character from our stack.
 • Branch to a unique path based on the character read
 • Call the DELETE subprogram
 • Rewind back to # and start simulating the next state

• Simulating PUSH₁ and PUSH₂
 • Move to $ if PUSH₂; otherwise stay at #
 • Call the INSERT subprogram
 • Rewind back to # and start simulating the next state

• When the 2PDA branches to ACCEPT, enter HALT

(continued...)
Part 2 — Modeling a TM on a 2PDA

• Or... how about we don’t do that

• Instead, why don’t we model a Post Machine on a 2PDA?
 1. Transfer all of the PM STORE to STACK₁ (use STACK₂ as buffer to maintain order)
 2. Emulate ADD X by moving everything from STACK₁ to STACK₂, PUSHing X onto STACK₁, then POP everything from STACK₂ back to STACK₁
 3. Emulate READ by just calling POP₁
 4. REJECTs can be discarded or kept the same
 5. ACCEPTs remain exactly the same

• Key Insight: STACK₂ is only used to initialized STACK₁ and to simulate ADD

We have now shown $2PDA \subseteq TM$ and $TM \subseteq 2PDA$ □
nPDAs

Theorem

Any language accepted by a PDA with \(n \) STACKs (where \(n \) is 2 or more), called an \(nPDA \), can also be accepted by some TM. In power we have:

\[
nPDA = TM \quad \text{if} \quad n \geq 2
\]

Proof.

- Use similar representation of 2PDAs on a TM by introducing new separators: \(\#_1, \#_2, \ldots, \#_n \)
- Relevant PUSH and POP operations will function on the TM
- Therefore, \(nPDA = TM \)
- 2PDA was already determined to be as powerful as TM
- 2PDA = \(nPDA \)

\[
FA = TG = NFA < DPDA < PDA < 2PDA = nPDA = PM = TM
\]
<table>
<thead>
<tr>
<th>Part 1</th>
<th>Regular Expressions, Finite Automata, Transition Graphs, Kleene’s Theorem, Finite Automata with Output, Regular Languages, Nonregular Languages (Pumping Lemma), Decidability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All of these are equivalent to a 0PDA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part 2</th>
<th>Context-Free Grammars, Grammatical Format, Pushdown Automata, CFG=PDA, Non-Context-Free Languages (Pumping Lemma), Context-Free Languages, Decidability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All of these are equivalent to a 1PDA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part 3</th>
<th>Turing Machines, Post Machines, Minsky’s Theorem...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All of these are equivalent to a 2PDA</td>
</tr>
</tbody>
</table>
1. [4pts each] VERYEQUAL is the language ($\Sigma = \{a \ b \ c\}$) as all strings that have as many total a’s as total b’s as total c’s
 - Draw a TM that accepts VERYEQUAL
 - Draw a PM that accepts VERYEQUAL
 - Draw a 3PDA that accepts VERYEQUAL
 - Draw a 2PDA that accepts VERYEQUAL

2. [4pts] Draw a 2PDA that accepts EVEN-EVEN and keeps at most two letters in its STACKs