CSCI 340: Computational Models

Regular Expressions

Chapter 4

Department of Computer Science
Yet Another New Method for Defining Languages

Given the Language:

\[L_1 = \{ x^n \text{ for } n = 1 \ 2 \ 3 \ \ldots \} \]

We could easily change the sequence for \(n \):

\[L_2 = \{ x^n \text{ for } n = 1 \ 3 \ 5 \ 7 \ \ldots \} \]

But if we change the sequence for \(n \) it can be difficult:

\[L_3 = \{ x^n \text{ for } n = 1 \ 4 \ 9 \ 16 \ \ldots \} \]

Or just unwieldy / non-definitive:

\[L_3 = \{ x^n \text{ for } n = 3 \ 4 \ 8 \ 22 \ \ldots \} \]

We need a notation for something more precise than the ellipsis
Reappearance of Kleene Star

Reconsider the language from Chapter 2:

\[L_4 = \{ \lambda \ x \ xx \ xxx \ xxxx \ \ldots \} \]

We presented one method for indicating this set as a closure:

Let \(S = \{ x \} \). Then \(L_4 = S^* \)

Or in shorthand:

\[L_4 = \{ x \}^* \]

Let’s now introduce a Kleene star applied to a letter rather than a set:

\[x^* \]

We can think of the star as an unknown or undetermined power.
Defining Languages

• We should not confuse x^* with L_4 as they are not equivalent
• L_4 is semantically a language, x^* is a language defining symbol
• We can define a language as follows: $L_4 = \text{language}(x^*)$

Example

$$\Sigma = \{a, b\}$$
$$L = \{a, ab, abb, abbb, abbbb, \ldots\}$$
$$L = \text{language}(a \ b^*)$$
$$L = \text{language}(ab^*)$$

Note: the Kleene star is applied to the letter immediately preceding
Applying Kleene Star to an Entire String

• Closure to entire substrings requires forced precedence
• We can accomplish this by grouping with parentheses
• For example: \((ab)^* = \lambda \) or \(ab\) or \(abab\) or \(ababab\)...

We can also use + to represent one-or-more

Theorem

\[xx^* = x^+ \]

Proof.

\[L_1 = \text{language}(xx^*) \quad L_2 = \text{language}(x^+) \]

\[\text{language}(x^*) = \lambda \ x \ xx \ xxx \ \ldots \]

\[\text{language}(x \ x^*) = x\lambda \ xx \ xxx \ xxxx \ \ldots \]

\[\text{language}(xx^*) = x \ xx \ xxx \ xxxx \ \ldots \]

\[\text{language}(xx^*) = \text{language}(x^+) = x \ xx \ xxx \ xxxx \ \ldots \ \square \]
Language Examples

Example

The language L_1 can be defined by any of the expressions below:

$$\begin{align*}
xx^* & \quad x^+ & \quad xx^*x^* & \quad x^*xx^* & \quad x^+x^* & \quad x^*x^*x^*xx^*
\end{align*}$$

Remember: x^* can always be λ

Example

The language defined by the expression

$$ab^*a$$

is the set of all strings of a’s and b’s that have at least two letters that

1. start and end with a
2. only have b’s in between
Language Examples

Example

The language of the expression

\[a^* b^* \]

contains all of the strings of \(a \)'s and \(b \)'s in which all the \(a \)'s (if any) come before all the \(b \)'s (if any)

\[\text{language}(a^* b^*) = \{ \lambda, a, b, aa, ab, bb, aaa, aab, abb, bbb, aaaa, \ldots \} \]

Note

It is very important to note that

\[a^* b^* \neq (ab)^* \]
Consider the language T defined over the alphabet $\Sigma = \{a, b, c\}$

$$T = \{a, c, ab, cb, abb, cbb, abbb, cbbb, abbbb, cbbbb \ldots\}$$

We may formally define the language as follows:

$$T = \text{language}((a + c)b)$$

Or in English as:

$$T = \text{language(either } a \text{ or } c \text{ followed by some } b's)$$

Note: parens force precedence change: *selection* before *concatenation*
Consider the language \(L \) defined over the alphabet \(\Sigma = \{ a, b \} \)

\[
L = \{aaa, aab, aba, abb, baa, bab, bba, bbb\}
\]

• What is the pattern?
• How can we write a language expression for this?
• How can we generalize this?
• How can we represent “choose any single character” from \(\Sigma \)?
Regular Expressions

Regular Language — a language which can be expressed as a regular expression

Definition for Regular Expression

1. Every letter of \(\Sigma \) can be made into a regular expression. \(\lambda \) is a regular expression.
2. If \(r_1 \) and \(r_2 \) are regular expressions, then so are:
 i. \((r_1) \)
 ii. \(r_1r_2 \)
 iii. \(r_1 + r_2 \)
 iv. \((r_1^*) \)
3. Nothing else is a regular expression

Note: we could add \(r_1^+ \) but we can rewrite it as \(r_1r_1^* \)
Defining Some Regular Expressions

<table>
<thead>
<tr>
<th>Chalkboard Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. All words that begin with an a and end with a b</td>
</tr>
<tr>
<td>2. All words that contain exactly two a’s</td>
</tr>
<tr>
<td>3. All words that contain exactly two a’s and start with b</td>
</tr>
<tr>
<td>4. All words that contain two or more a’s</td>
</tr>
<tr>
<td>5. All words that contain two or more a’s that end in b</td>
</tr>
<tr>
<td>6. All words of length 3 or higher which contain two a’s in a row</td>
</tr>
</tbody>
</table>
A More Complicated Example

Language of all words that have at least one \(a \) and one \(b \)

\[(a + b)^*a(a + b)^*b(a + b)^*\]

which can also be expressed as

\(<\text{arbitrary}>\ a\ <\text{arbitrary}>\ b\ <\text{arbitrary}>\)

This mandates that \(a \) must be found before \(b \).
The unhandled case can be matched with:

\[bb^*aa^*\]

One of these must be true for our expression to be matched:

\[(a + b)^*a(a + b)^*b(a + b)^* + bb^*aa^*\]
Confusing Equivalences

Consider from the last slide

\[(a + b)^* a(a + b)^* b(a + b)^* + bb^*aa^*\]

If we wanted to include strings of all a’s or b’s we would use:

\[a^* + b^*\]

This would mean that we could define a regular expression which accepts any sequence of a’s and b’s:

\[(a + b)^* a(a + b)^* b(a + b)^* + bb^*aa^* + a^* + b^*\]

but this is simply just

\[(a + b)^*\]

These are not obviously equivalent
Algebraic Equivalence Need Not Apply

An Analysis of \((a + b)^*\)

\[
(a + b)^* = (a + b)^* + (a + b)^*
\]

\[
(a + b)^* = (a + b)^*(a + b)^*
\]

\[
(a + b)^* = a(a + b)^* + b(a + b)^* + \lambda
\]

\[
(a + b)^* = (a + b)^*ab(a + b)^* + b^*a^*
\]

All of these are equal — O_o
Some Algebra Works!

Let V be the language of all strings of a’s and b’s in which the strings are either all b’s or else there is an a followed by some b’s. Let V also contain the word λ.

$$V = \{ \lambda, a, b, ab, bb, abb, bbb, abbb, bbbb, \ldots \}$$

We can then define V by the expression:

$$b^* + ab^*$$

Where λ is embedded into the term b^*. Alternatively, we could define V by the expression

$$(\lambda + a)b^*$$

This gives us an option of having a a or nothing! Since we could always write $b^* = \lambda b^*$, we demonstrate the distributive property

$$\lambda b^* + ab^* = (\lambda + a)b^*$$
Concatenation

Definition

If S and T are sets of strings of letters (whether they are finite or infinite sets), we define the product set of strings of letters to be

$$ST = \{ \text{all combinations of all string } S \text{ followed with a string from } T \}$$

Example

$$S = \{a \ a a \ a a a\} \quad T = \{b b \ b b b\}$$

$$ST = \{abb \ a b b \ a a b \ a a b b b \ a a a b b \ a a a b b b\}$$

Rewritten as a Regular Expression

$$(a + aa + aaa)(bb + bbb)$$

$$= \text{abb + abbb + aabb + aabbb + aaabb + aaabbb}$$
Concatenation

Definition

If S and T are sets of strings of letters (whether they are finite or infinite sets), we define the product set of strings of letters to be

$$ST = \{ \text{all combinations of all string } S \text{ followed with a string from } T \}$$

Example

$$S = \{a \ bb \ bab\} \quad T = \{a \ ab\}$$

$$ST = \{aa \ aab \ bba \ bbab \ baba \ babab\}$$

Rewritten as a Regular Expression

$$(a + bb + bab)(a + ab) = aa + aab + bba + bbab + baba + babab$$
Concatenation

What are the regular expressions for the concatenation of the two sets in each example? Give both the simple and “distributed” forms.

<table>
<thead>
<tr>
<th>Example</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$P = {a \ bb \ bab}$</td>
<td>$Q = {\lambda \ bbbbb}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$M = {\lambda \ x \ xx}$</td>
<td>$N = {\lambda \ y \ yy \ yyy \ yyyyy \ \ldots}$</td>
</tr>
</tbody>
</table>
Associating a Language with Every RE

The rules below define the **language associated** with any RE

1. The language associated with the regular expression that is just a single letter is that one-letter word alone and the language associated with λ is just {λ}, a one-word language.

2. If r_1 is a regular expression associated with language L_1 and r_2 is a regular expression associated with the language L_2 then
 - $\text{RE } (r_1)(r_2)$ is associated with $L_1 \times L_2$
 \[
 \text{language}(r_1r_2) = L_1L_2
 \]
 - $\text{RE } r_1 + r_2$ is associated with $L_1 \cup L_2$
 \[
 \text{language}(r_1 + r_2) = L_1 + L_2
 \]
 - $\text{RE } r_1^*$ is L_1^* (the Kleene closure)
 \[
 \text{language}(r_1^*) = L_1^*
 \]
Expressing a Finite Language as RE

Theorem

If \(L \) is a finite language (a language with only finitely many words), then \(L \) can be defined by a regular expression

Proof.

To make one RE that defines the language \(L \), turn all the words in \(L \) into \textbf{boldface} type and stick pluses between them. Violá. For example, the RE defining the language

\[
L = \{aa\ ab\ ba\ bb\}
\]

is

\[
aa + ab + ba + bb \quad \text{OR} \quad (a + b)(a + b)
\]

The reason this “trick” only works for finite languages is that an infinite language would yield an infinitely-long regular expression (which is forbidden) \(\square \)
EVEN-EVEN

\[E = [aa + bb + (ab + ba)(aa + bb)^* (ab + ba)] \]

This regular expression represents the collection of all words that are made up of “syllables” of three types:

\[
\begin{align*}
 \text{type}_1 &= aa \\
 \text{type}_2 &= bb \\
 \text{type}_3 &= (ab + ba)(aa + bb)^* (ab + ba)
\end{align*}
\]

\[E = [\text{type}_1 + \text{type}_2 + \text{type}_3] \]

Question 1

What does this Regular Expression “do”?

Question 2

What are the first 12 strings matched by this RE?
Homework 2a

1. For each of the problems below, give a regular expression which only accepts the following. Assume $\Sigma = \{a, b\}$
 1. All strings that begin and end with the same letter
 2. All strings in which the total number of a’s is divisible by 3
 3. All strings that end in a double letter

2. Show the following pairs of regular expressions define the same language
 1. $(ab)^*a$ and $a(ba)^*$
 2. $(a^*bbb)^*a^*$ and $a^*(bbba^*)^*$

3. Describe (in English phrases) the languages associated with the following regular expressions
 1. $(a + b)^*a(\lambda + bbbb)$
 2. $(a(aa)^*b(bb)^*)^*$
 3. $((a + b)a)^*$