CSCI 340: Computational Models

Regular Expressions

Chapter 4

Department of Computer Science
Yet Another New Method for Defining Languages

Given the Language:

\[L_1 = \{ x^n \text{ for } n = 1 \ 2 \ 3 \ \ldots \} \]

We could easily change the sequence for \(n \):

\[L_2 = \{ x^n \text{ for } n = 1 \ 3 \ 5 \ 7 \ \ldots \} \]

But if we change the sequence for \(n \) it can be difficult:

\[L_3 = \{ x^n \text{ for } n = 1 \ 4 \ 9 \ 16 \ \ldots \} \]

Or just unwieldy / non-definitive:

\[L_3 = \{ x^n \text{ for } n = 3 \ 4 \ 8 \ 22 \ \ldots \} \]

We need a notation for something more precise than the ellipsis
Reappearance of Kleene Star

Reconsider the language from Chapter 2:

\[L_4 = \{ \lambda, x, xx, xxx, xxxx, \ldots \} \]

We presented one method for indicating this set as a closure:

Let \(S = \{ x \} \). Then \(L_4 = S^* \)

Or in shorthand:

\[L_4 = \{ x \}^* \]

Let’s now introduce a Kleene star applied to a letter rather than a set:

\[x^* \]

We can think of the star as an unknown or undetermined power.
Defining Languages

- We should not confuse x^* with L_4 as they are not equivalent.
- L_4 is semantically a language, x^* is a language defining symbol.
- We can define a language as follows: $L_4 = \text{language}(x^*)$.

Example

$$
\Sigma = \{a\ b\} \\
L = \{a\ ab\ abb\ abbb\ abbbb\ \ldots\} \\
L = \text{language}(a\ b^*) \\
L = \text{language}(ab^*)
$$

Note: the Kleene star is applied to the letter immediately preceding
Applying Kleene Star to an Entire String

- Closure to entire substrings requires forced precedence
- We can accomplish this by grouping with parentheses
- For example: (ab)* = λ or ab or abab or ababab...

We can also use + to represent one-or-more

Theorem

\[xx^* = x^+ \]

Proof.

\[L_1 = \text{language}(xx^*) \quad L_2 = \text{language}(x^+) \]

\[\text{language}(x^*) = \lambda \; x \; xx \; xxx \; \ldots \]

\[\text{language}(x \; x^*) = x\lambda \; xx \; xxx \; xxxx \; \ldots \]

\[\text{language}(xx^*) = x \; xx \; xxx \; xxxx \; \ldots \]

\[\text{language}(xx^*) = \text{language}(x^+) = x \; xx \; xxx \; xxxx \; \ldots \]
Language Examples

Example

The language L_1 can be defined by any of the expressions below:

$$xx^* \quad x^+ \quad xx^*x^* \quad x^*xx^* \quad x^+x^* \quad x^*x^*x^*xx^*$$

Remember: x^* can always be λ

Example

The language defined by the expression

$$ab^*a$$

is the set of all strings of a’s and b’s that have at least two letters that

1. start and end with a
2. only have b’s in between
Language Examples

Example

The language of the expression

\[a^* b^* \]

contains all of the strings of a’s and b’s in which all the a’s (if any) come before all the b’s (if any)

\[
\text{language}(a^* b^*) = \{ \lambda, a, b, aa, ab, bb, aaa, aab, abb, bbb, aaaa, \ldots \}
\]

Note

It is *very* important to note that

\[a^* b^* \neq (ab)^* \]
Language Examples

Example

Consider the language T defined over the alphabet $\Sigma = \{a, b, c\}$

$$T = \{a\ c\ ab\ cb\ abb\ cbb\ abbb\ cbbb\ abbbb\ cbbbb\ \ldots\}$$

We may formally define the language as follows:

$$T = \text{language}((a + c)b)$$

Or in English as:

$$T = \text{language(either } a \text{ or } c \text{ followed by some } b\text{’s})$$

Note: parens force precedence change: selection before concatenation
Consider the language \(L \) defined over the alphabet \(\Sigma = \{a, b\} \)

\[
L = \{aaa, aab, aba, abb, baa, bab, bba, bbb\}
\]

• What is the pattern?
• How can we write a language expression for this?
• How can we generalize this?
• How can we represent “choose any single character” from \(\Sigma \)?
Regular Expressions

Regular Language — a language which can be expressed as a regular expression

Definition for Regular Expression

1. Every letter of Σ can be made into a regular expression. λ is a regular expression.
2. If r_1 and r_2 are regular expressions, then so are:
 - (i) (r_1)
 - (ii) r_1r_2
 - (iii) $r_1 + r_2$
 - (iv) (r_1^*)
3. Nothing else is a regular expression

Note: we could add r_1^+ but we can rewrite it as $r_1r_1^*$
Defining Some Regular Expressions

Chalkboard Problems

1. All words that begin with an a and end with a b
2. All words that contain exactly two a’s
3. All words that contain exactly two a’s and start with b
4. All words that contain two or more a’s
5. All words that contain two or more a’s that end in b
6. All words of length 3 or higher which contain two a’s in a row
A More Complicated Example

Language of all words that have at least one a and one b

$$(a + b)^*a(a + b)^*b(a + b)^*$$

which can also be expressed as

$$<\text{arbitrary}> \ a \ <\text{arbitrary}> \ b \ <\text{arbitrary}>$$

This mandates that a must be found before b. The unhandled case can be matched with:

$$bb^*aa^*$$

One of these must be true for our expression to be matched:

$$(a + b)^*a(a + b)^*b(a + b)^* + bb^*aa^*$$
Confusing Equivalences

Consider from the last slide

\[(a + b)^*a(a + b)^*b(a + b)^* + bb^*aa^*\]

If we wanted to include strings of all \(a\)'s or \(b\)'s we would use:

\[a^* + b^*\]

This would mean that we could define a regular expression which accepts any sequence of \(a\)'s and \(b\)'s:

\[(a + b)^*a(a + b)^*b(a + b)^* + bb^*aa^* + a^* + b^*\]

but this is simply just

\[(a + b)^*\]

These are not obviously equivalent
Algebraic Equivalence Need Not Apply

An Analysis of \((a + b)^*\)

\[(a + b)^* = (a + b)^* + (a + b)^*\]
\[(a + b)^* = (a + b)^*(a + b)^*\]
\[(a + b)^* = a(a + b)^* + b(a + b)^* + \lambda\]
\[(a + b)^* = (a + b)^*ab(a + b)^* + b^*a^*\]

All of these are equal — O_o
Some Algebra Works!

Let V be the language of all strings of a’s and b’s in which the strings are either all b’s or else there is an a followed by some b’s. Let V also contain the word λ.

$$V = \{\lambda\ a\ b\ ab\ bb\ abb\ bbb\ abbb\ bbbb\ \ldots\}$$

We can then define V by the expression:

$$b^* + ab^*$$

Where λ is embedded into the term b^*. Alternatively, we could define V by the expression

$$(\lambda + a)b^*$$

This gives us an option of having a a or nothing! Since we could always write $b^* = \lambda b^*$, we demonstrate the distributive property

$$\lambda b^* + ab^* = (\lambda + a)b^*$$
_concatenation

Definition

If S and T are sets of strings of letters (whether they are finite or infinite sets), we define the product set of strings of letters to be

$$ST = \{ \text{all combinations of all string } S \text{ followed with a string from } T \}$$

Example

$$S = \{a \ a a \ a a a\} \quad T = \{b b \ b b b\}$$

$$ST = \{a b b \ a b b b \ a a b b \ a a b b b \ a a a b b \ a a a b b b\}$$

Rewritten as a Regular Expression

$$(a + a a + a a a)(b b + b b b)$$

$$= a b b + a b b b + a a b b + a a b b b + a a a b b + a a a b b b$$
Concatenation

Definition

If S and T are sets of strings of letters (whether they are finite or infinite sets), we define the product set of strings of letters to be

$$ST = \{ \text{all combinations of all string } S \text{ followed with a string from } T \}$$

Example

- $S = \{a\ bb\ bab\}$
- $T = \{a\ ab\}$
- $ST = \{aa\ aab\ bba\ bbab\ baba\ babab\}$

Rewritten as a Regular Expression

$$(a + bb + bab)(a + ab) = aa + aab + bba + bbab + baba + babab$$
Concatenation

What are the regular expressions for the concatenation of the two sets in each example? Give both the simple and “distributed” forms.

Example

\[P = \{a\ bb\ bab\} \]
\[Q = \{\lambda\ bbb\} \]

Example

\[M = \{\lambda\ x\ xx\} \]
\[N = \{\lambda\ y\ yy\ yyy\ yyyyy\ \ldots\} \]
Associating a Language with Every RE

The rules below define the **language associated** with any RE:

1. The language associated with the regular expression that is just a single letter is that one-letter word alone and the language associated with λ is just $\{ \lambda \}$, a one-word language.

2. If r_1 is a regular expression associated with language L_1 and r_2 is a regular expression associated with the language L_2 then:
 - i. RE $(r_1)(r_2)$ is associated with $L_1 \times L_2$
 \[
 \text{language}(r_1r_2) = L_1L_2
 \]
 - ii. RE $r_1 + r_2$ is associated with $L_1 \cup L_2$
 \[
 \text{language}(r_1 + r_2) = L_1 + L_2
 \]
 - iii. RE r_1^* is L_1^* (the Kleene closure)
 \[
 \text{language}(r_1^*) = L_1^*
 \]
Exprsing a Finite Language as RE

Theorem

If L is a finite language (a language with only finitely many words), then L can be defined by a regular expression.

Proof.

To make one RE that defines the language L, turn all the words in L into **boldface** type and stick pluses between them. Violá. For example, the RE defining the language

$L = \{aa\ ab\ ba\ bb\}$

is

$aa + ab + ba + bb \ OR \ (a + b)(a + b)$

The reason this “trick” only works for *finite* languages is that an infinite language would yield an infinitely-long regular expression (which is forbidden). □
EVEN-EVEN

\[E = \left[aa + bb + (ab + ba)(aa + bb)^* (ab + ba) \right] \]

This regular expression represents the collection of all words that are made up of “syllables” of three types:

- \(\text{type}_1 = \text{aa} \)
- \(\text{type}_2 = \text{bb} \)
- \(\text{type}_3 = (ab + ba)(aa + bb)^* (ab + ba) \)

\[E = \left[\text{type}_1 + \text{type}_2 + \text{type}_3 \right] \]

Question 1

What does this Regular Expression “do”?

Question 2

What are the first 12 strings matched by this RE?
Homework 2a

1. For each of the problems below, give a regular expression which only accepts the following. Assume $\Sigma = \{a, b\}$
 1. All strings that begin and end with the same letter
 2. All strings in which the total number of a's is divisible by 3
 3. All strings that end in a double letter

2. Show the following pairs of regular expressions define the same language
 1. $(ab)^*a$ and $a(ba)^*$
 2. $(a^*bbb)^*a^*$ and $a^*(bbba)^*$

3. Describe (in English phrases) the languages associated with the following regular expressions
 1. $(a + b)^*a(\lambda + bbbb)$
 2. $(a(aa)^*b(bb)^*)^*$
 3. $((a + b)a)^*$