Yet Another New Method for Defining Languages

Given the Language:

$$L_1 = \{x^n \text{ for } n = 1 \ 2 \ 3 \ \ldots\}$$

We could easily change the sequence for n:

$$L_2 = \{x^n \text{ for } n = 1 \ 3 \ 5 \ 7 \ \ldots\}$$

But if we change the sequence for n it can be difficult:

$$L_3 = \{x^n \text{ for } n = 1 \ 4 \ 9 \ 16 \ \ldots\}$$

Or just unwieldy / non-definitive:

$$L_3 = \{x^n \text{ for } n = 3 \ 4 \ 8 \ 22 \ \ldots\}$$

We need a notation for something more precise than the ellipsis
Reappearance of Kleene Star

Reconsider the language from Chapter 2:

\[L_4 = \{ \lambda \ x \ xx \ xxx \ xxxx \ \ldots \} \]

We presented one method for indicating this set as a closure:

Let \(S = \{ x \} \). Then \(L_4 = S^* \)

Or in shorthand:

\[L_4 = \{ x \}^* \]

Let’s now introduce a Kleene star applied to a letter rather than a set:

\[x^* \]

We can think of the star as an unknown or undetermined power.
Defining Languages

- We should not confuse x^* with L_4 as they are not equivalent.
- L_4 is semantically a language, x^* is a language defining symbol.
- We can define a language as follows: $L_4 = \text{language}(x^*)$

Example

$\Sigma = \{a, b\}$

$L = \{a, ab, abb, abbb, abbbb, \ldots\}$

$L = \text{language}(a \ b^*)$

$L = \text{language}(ab^*)$

Note: the Kleene star is applied to the letter immediately preceding
Applying Kleene Star to an Entire String

- Closure to entire substrings requires forced precedence
- We can accomplish this by grouping with parentheses
- For example: \((ab)^* = \lambda\) or \(ab\) or \(abab\) or \(ababab\)...

We can also use \(+\) to represent one-or-more

Theorem

\[xx^* = x^+ \]

Proof.

\[L_1 = \text{language}(xx^*) \quad L_2 = \text{language}(x^+) \]

\[\text{language}(x^*) = \lambda \ x \ xx \ xxx \ \ldots \]

\[\text{language}(x \ x^*) = x\lambda \ xx \ xxx \ xxxx \ \ldots \]

\[\text{language}(xx^*) = x \ xx \ xxx \ xxxx \ \ldots \]

\[\text{language}(xx^*) = \text{language}(x^+) = x \ xx \ xxx \ xxxx \ \ldots \]
Language Examples

Example

The language L_1 can be defined by any of the expressions below:

\[xx^* \quad x^+ \quad xx^* x^* \quad x^* xx^* \quad x^+ x^* \quad x^* x^* x^* xx^* \]

Remember: x^* can always be λ

Example

The language defined by the expression

\[ab^*a \]

is the set of all strings of a’s and b’s that have at least two letters that

1. start and end with a
2. only have b’s in between
Language Examples

Example

The language of the expression

\[a^*b^* \]

contains all of the strings of \(a\)'s and \(b\)'s in which all the \(a\)'s (if any) come before all the \(b\)'s (if any)

\[
\text{language}(a^*b^*) = \{ \lambda, a, b, aa, ab, bb, aaa, aab, abb, bbb, aaaa, \ldots \}
\]

Note

It is very important to note that

\[a^*b^* \neq (ab)^* \]
Language Examples

Example

Consider the language T defined over the alphabet $\Sigma = \{a \ b \ c\}$

$$T = \{a \ c \ ab \ cb \ abb \ cbb \ abbb \ cbbb \ abbb \ cbbbbb \ \ldots\}$$

We may formally define the language as follows:

$$T = \text{language}(\quad a + c)\quad b^*$$

Or in English as:

$$T = \text{language(either a or c followed by some b’s)}$$

Note: parens force precedence change: selection before concatenation
Language Examples

Example

Consider the language L defined over the alphabet $\Sigma = \{a\ b\}$

$$L = \{aaa\ aab\ aba\ abb\ baa\ bab\ bba\ bbb\}$$

• What is the pattern?
• How can we write a language expression for this?
• How can we generalize this?
• How can we represent “choose any single character” from Σ?
Regular Expressions

Regular Language — a language which can be expressed as a regular expression

Definition for Regular Expression

1. Every letter of \(\Sigma \) can be made into a regular expression. \(\lambda \) is a regular expression.
2. If \(r_1 \) and \(r_2 \) are regular expressions, then so are:

 - i. \((r_1)\)
 - ii. \(r_1r_2\)
 - iii. \(r_1 + r_2\)
 - iv. \((r_1^*)\)
3. Nothing else is a regular expression

Note: we could add \(r_1^+ \) but we can rewrite it as \(r_1r_1^* \)
Defining Some Regular Expressions

Chalkboard Problems

1. All words that begin with an \(a \) and end with a \(b \)
2. All words that contain exactly two \(a \)'s
3. All words that contain exactly two \(a \)'s and start with \(b \)
4. All words that contain two or more \(a \)'s
5. All words that contain two or more \(a \)'s that end in \(b \)
6. All words of length 3 or higher which contain two \(a \)'s in a row
A More Complicated Example

Language of all words that have at least one a and one b

$$(a + b)^*a(a + b)^*b(a + b)^*$$

which can also be expressed as

$$<arbitrary>\ a \ <arbitrary>\ b \ <arbitrary>$$

This mandates that a must be found before b.
The unhandled case can be matched with:

$$bb^*aa^*$$

One of these must be true for our expression to be matched:

$$(a + b)^*a(a + b)^*b(a + b)^* + bb^*aa^*$$
Confusing Equivalences

Consider from the last slide

\[(a + b)^* a(a + b)^* b(a + b)^* + bb^* aa^*\]

If we wanted to include strings of all \(a\)'s or \(b\)'s we would use:

\[a^* + b^*\]

This would mean that we could define a regular expression which accepts any sequence of \(a\)'s and \(b\)'s:

\[(a + b)^* a(a + b)^* b(a + b)^* + bb^* aa^* + a^* + b^*\]

but this is simply just

\[(a + b)^*\]

These are not obviously equivalent
Algebraic Equivalence Need Not Apply

An Analysis of \((a + b)^*\)

\[
(a + b)^* = (a + b)^* + (a + b)^*
\]
\[
(a + b)^* = (a + b)^*(a + b)^*
\]
\[
(a + b)^* = a(a + b)^* + b(a + b)^* + \lambda
\]
\[
(a + b)^* = (a + b)^*ab(a + b)^* + b^*a^*
\]

All of these are equal — O_o
Let \(V \) be the language of all strings of \(a \)'s and \(b \)'s in which the strings are either all \(b \)'s or else there is an \(a \) followed by some \(b \)'s. Let \(V \) also contain the word \(\lambda \).

\[
V = \{ \lambda \ a \ b \ ab \ bb \ abb \ bbb \ abbb \ bbbb \ \ldots \}
\]

We can then define \(V \) by the expression:

\[
b^* + ab^*
\]

Where \(\lambda \) is embedded into the term \(b^* \). Alternatively, we could define \(V \) by the expression

\[
(\lambda + a)b^*
\]

This gives us an option of having a \(a \) or nothing! Since we could always write \(b^* = \lambda b^* \), we demonstrate the distributive property

\[
\lambda b^* + ab^* = (\lambda + a)b^*
\]
Concatenation

Definition

If S and T are sets of strings of letters (whether they are finite or infinite sets), we define the product set of strings of letters to be

$$ST = \{ \text{all combinations of all string } S \text{ followed with a string from } T \}$$

Example

$$S = \{a, aa, aaa\} \quad T = \{bb, bbb\}$$

$$ST = \{abb, abbb, aabb, aabbb, aaabb, aaabbb\}$$

Rewritten as a Regular Expression

$$(a + aa + aaa)(bb + bbb) =$$

$$abb + abbb + aabb + aabbb + aaabb + aaabbb$$
Concatenation

Definition

If S and T are sets of strings of letters (whether they are finite or infinite sets), we define the product set of strings of letters to be $ST = \{ \text{all combinations of all string } S \text{ followed with a string from } T \}$

Example

$$S = \{a \ bb \ bab\} \quad T = \{a \ ab\}$$

$$ST = \{aa \ aab \ bba \ bbab \ baba \ babab\}$$

Rewritten as a Regular Expression

$$(a + bb + bab)(a + ab)$$

$$= aa + aab + bba + bbab + baba + babab$$
Concatenation

What are the regular expressions for the concatenation of the two sets in each example? Give both the simple and “distributed” forms

Example

\[P = \{a \ bb \ bab\} \]
\[Q = \{\lambda \ bbb\} \]

Example

\[M = \{\lambda \ x \ xx\} \]
\[N = \{\lambda \ y \ yy \ yyy \ yyyy \ \ldots\} \]
The rules below define the **language associated** with any RE

1. The language associated with the regular expression that is just a single letter is that one-letter word alone and the language associated with λ is just \{ λ \}, a one-word language.

2. If r_1 is a regular expression associated with language L_1 and r_2 is a regular expression associated with the language L_2 then
 - $\text{RE } (r_1)(r_2)$ is associated with $L_1 \times L_2$
 \[
 \text{language}(r_1r_2) = L_1L_2
 \]
 - $\text{RE } r_1 + r_2$ is associated with $L_1 \cup L_2$
 \[
 \text{language}(r_1 + r_2) = L_1 + L_2
 \]
 - $\text{RE } r_1^*$ is L_1^* (the Kleene closure)
 \[
 \text{language}(r_1^*) = L_1^*
 \]
Expressing a Finite Language as RE

Theorem

If L is a finite language (a language with only finitely many words), then L can be defined by a regular expression.

Proof.

To make one RE that defines the language L, turn all the words in L into boldface type and stick pluses between them. Violá. For example, the RE defining the language

$$L = \{aa\ ab\ ba\ bb\}$$

is

$$aa + ab + ba + bb \quad OR \quad (a + b)(a + b)$$

The reason this “trick” only works for finite languages is that an infinite language would yield an infinitely-long regular expression (which is forbidden). □
EVEN-EVEN

\[E = \left[aa + bb + (ab + ba)(aa + bb)^* (ab + ba) \right] \]

This regular expression represents the collection of all words that are made up of “syllables” of three types:

- type_1 = aa
- type_2 = bb
- type_3 = (ab + ba)(aa + bb)^* (ab + ba)

\[E = [\text{type}_1 + \text{type}_2 + \text{type}_3] \]

Question 1

What does this Regular Expression “do”?

Question 2

What are the first 12 strings matched by this RE?
Homework 2a

1. For each of the problems below, give a regular expression which only accepts the following. Assume $\Sigma = \{a, b\}$
 - All strings that begin and end with the same letter
 - All strings in which the total number of a's is divisible by 3
 - All strings that end in a double letter

2. Show the following pairs of regular expressions define the same language
 - $(ab)^*a$ and $a(ba)^*$
 - $(a^*bbb)^*a^*$ and $a^*(bbba^*)^*$

3. Describe (in English phrases) the languages associated with the following regular expressions
 - $(a + b)^*a(\lambda + bbbb)$
 - $(a(aa)^*b(bb)^*)^*$
 - $((a + b)a)^*$