What is a Language?

- English: “letters”, “words”, “sentences”
- Programming: “keywords”, “variables”, “numbers”, “symbols”
- General: *language structure* – decision of whether a given string of units is “matched” or *valid*
Important Terms

- **alphabet** – finite set of fundamental units out of which we build structures.
- **language** – a certain specified set of strings of characters from the alphabet
- **words** – strings which are permissible in the language
- **empty string or null string** – a string which has no letters (λ)
- **null set** – denoted as \emptyset

Question

Is there a difference between empty string and an empty language?
An Aside on Set Theory

Assume

- L is a language
- $+$ is “union of sets” operator
- \emptyset is empty set
- λ is empty string

Claim 1

$L + \{\lambda\} \neq L$

Claim 2

$L + \emptyset = L$

This implies that \emptyset is a valid definition for a language
The English Languages

Alphabet

\[\Sigma = \{ a, b, c, d, e \ldots z', - \} \]

Words

\[\text{ENGLISH-WORDS} = \{ \text{all the words in a standard dictionary} \} \]

Problem: How can we represent sentences?
The *Real* English Languages

Alphabet

\[\Gamma = \text{entries of \textit{ENGLISH-WORDS}} + \{\text{space}\} + \{\text{punctuation}\} \]

Words (a.k.a. English Sentences)

- Must rely on grammatical rules of English
- There are *infinitely many*
 - I ate one apple.
 - I ate two apples.
 - I ate three apples.
 -

We can list all rules of the grammar to give a *finite description* for an *infinite language*. This will make “I ate three Tuesdays” valid!
Defining a Language

Language Defining Rules

1. Tell us how to test a string of alphabet letters that we are presented with.
2. Tell us how to construct all of the words in the language by some clear procedure.

Example

\[\Sigma = \{x\} \]

\[L_1 = \{x \ xx \ xxx \ xxxx \ ...\} \]

alternatively,

\[L_1 = \{x^n \ for \ n = 1 \ 2 \ 3 \ ...\} \]
Null String?
A language does not need to accept λ. L_1 doesn’t

Concatenation
- Two strings written side by side yield a new string
- x^n concatenated with x^m is x^{n+m}

Symbols
- We can designate a word in a given language by a new symbol
 - Let $a = xx$ and $b = xxx$
 - Therefore, $ab = xxxxxx$
- Two words of L concatenated are not guaranteed to produce another word in L
Example: Numbers

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Sigma = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9})</td>
</tr>
<tr>
<td>(L_3 = { \text{any finite string of } \Sigma \text{ letters that doesn’t start with 0} })</td>
</tr>
<tr>
<td>A subset of (L_3) might look like:</td>
</tr>
<tr>
<td>(L_3 = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, \ldots })</td>
</tr>
<tr>
<td>If we want to allow the string (word) 0, we could say:</td>
</tr>
<tr>
<td>(L_3 = { \text{any finite string of } \Sigma \text{ letters that, if it starts with 0, has no more letters after the first} })</td>
</tr>
</tbody>
</table>
Example: Length

We define the function \textbf{length} of a string to be the number of letters in the string. We write this function using the word “length”. For example, if \(a = xxxx \) in the language \(L_1 \), then

\[
\text{length}(a) = 4
\]

Or we could write directly that in a language, such as \(L_3 \),

\[
\text{length}(428) = 3
\]

In any language which includes \(\lambda \) we have

\[
\text{length}(\lambda) = 0
\]

Corollary: For any word \(w \) in a language, if \(\text{length}(w) = 0 \), then \(w = \lambda \)
Redefining Number with \textbf{length}

We can present another definition for L_3

$$L_3 = \{ \text{any finite string of } \Sigma \text{ letters that, if it has}$$

length more than 1, does not start with a 0 $\}$

This isn’t necessarily a better definition, but it illustrates equivalent languages can be defined in multiple ways.
Adding λ to a finite language

If we look back to L_1, which described one or more “x” characters defining valid words, we may want to expand the language to include empty string

$$L_4 = \{ \lambda \ x \ xx \ xxx \ xxxx \ldots \}$$

Alternatively,

$$L_4 = \{ x^n \text{ for } n = 0 \ 1 \ 2 \ 3 \ldots \}$$

Notice: $x^0 = \lambda$
Example: Reverse

Definition

Let us introduce the function reverse. If a is a word in some language, L, then reverse(a) is the same string of letters spelled backward even if this backwards string is not a word in L.

Example

\[
\begin{align*}
\text{reverse}(xxx) &= xxx \\
\text{reverse}(xxxxx) &= xxxxx \\
\text{reverse}(145) &= 541
\end{align*}
\]

But let us also note that in L_1,

\[
\text{reverse}(140) = 041
\]

which is not a word in L_1.
Example: Palindrome Language

Definition

PALINDROME (P) is a new language over the alphabet

$$\Sigma = \{a \ b\}$$

$$P = \{\lambda, \text{ and all strings } x \mid \text{reverse}(x) = x\}$$

$$\therefore$$

$$P = \{\lambda \ a \ b \ aa \ bb \ aaa \ aba \ bab \ bbb \ aaaa \ abba \ldots\}$$

Interesting Properties

1. **concatenating** two words from P sometimes produces a word within P. e.g. $abba + abba = abbaabba$

2. More often than not, **concatenating** two words from P does not yield a word within P. e.g. $aa + aba = aaaba$
Kleene Closure (or the Kleene Star)

Definition

- Given an alphabet Σ, we wish to define a language in which any string of letters from Σ is a word, even the null string λ.
- This language shall be known as the **closure** of the alphabet.
- Symbolically denoted as: Σ^*

Example

If $\Sigma = \{x\}$, then $\Sigma^* = \{\lambda x xx xxx xxxx \ldots\}$

If $\Sigma = \{0, 1\}$, then $\Sigma^* = \{\lambda 0 1 00 01 10 11 000 001 \ldots\}$

If $\Sigma = \{a, b, c\}$, then $\Sigma^* = \{\lambda a b c aa ab ac ba bb bc ca cb cc aaa \ldots\}$
Kleene Closure

• an operation that makes an infinite language or strings of letters out of an alphabet
• infinitely many words, each of a finite length
• often ordered by size first, then lexicographically

Definition

If S is a set of words, then S^* means the set of all finite strings formed by concatenating words from S. Any word may be used as often as we like, and λ is also included.

Problem

Compare:

ENGLISH-WORDS* and ENGLISH-SENTENCES
Kleene Closure

Example

\[S = \{aa\ b\} \]
\[S^* = ? \]

Example

\[S = \{a\ ab\} \]
\[S^* = ? \]

To prove that a certain word is in the closure language \(S^* \), we must show how it can be written as a **concatenation** of words from the base set \(S \).
The **concatenation** of words from a base set S can be viewed as a **factor** of a word from **closure set** S^*

Example

$$S = \{ xx \ xxx \}$$
$$S^* = \{ x^n \ \text{for} \ n = 0 \ 2 \ 3 \ 4 \ \ldots \}$$

Notice how the word x is the only word not in the language S^*

There is also ambiguity in factoring certain strings e.g. $xxxxxxx$

$$ (xx)(xx)(xxx) \ or \ (xx)(xxx)(xx) \ or \ (xxx)(xx)(xx) $$

How can we **prove** that S only contains repetitions of letter x not equal to size of 1?
Proving S^* contains all $x^n \mid n \neq 1$

Example

$S = \{xx \ xxx\}$

$S^* = \{x^n \text{ for } n = 0\ 2\ 3\ 4 \ldots\}$

Proof (by constructive algorithm).

Base: $x^0 = \lambda$

Base: $x^2 = xx$

Base: $x^3 = xxx$

Factor: $x^4 = x^2 + x^2$

Factor: $x^5 = x^3 + x^2$

$x^{n+2} = x^n + x^2 \blacksquare$
The Kleene closure of two sets can end up being the **same language**

Example

\[
S = \{a \ b \ ab\} \\
T = \{a \ b \ bb\}
\]

- Both \(S^*\) and \(T^*\) define languages of all strings of \(a\)’s and \(b\)’s.
- Any string of \(a\)’s and \(b\)’s can be factored into syllables \((a)\) and \((b)\)

Consider \(ababbabba\) and \(abababbbb\)
+ Notation

If for some reason we wish to modify the concept of closure to refer to only the concatenation of some *non-zero* strings from a set S, we use the notation $^+$ instead of *

Example

If $\Sigma = \{x\}$, then $\Sigma^+ = \{x \; xx \; xxx \; \ldots\}$

- This is often referred to as *positive closure* ("one-or-more")
- If S is a language which contains λ, then $S^+ = S^*$
- If S is a language which doesn’t contain λ, then $S^+ = S^* - \{\lambda\}$
Double Closure

Given S^*, apply its closure: $(S^*)^*$

- If S is not \emptyset or $\{\lambda\}$, then S^* is infinite
- We will be taking the closure of an infinite set
- Arbitrary concatenation of the alphabet, applied twice

Proving $S^* = S^{**}$ (by construction).

$S = \{ a \ b \}$
$s = aababaaaaaba$
\[\text{[arbitrary string]}\]
$s = (aaba)(baaa)(aaba)$
\[\text{[constructed from } S^*\text{]}\]
$s = [(a)(a)(b)(a)][(b)(a)(a)(a)][(a)(a)(b)(a)]$
\[\text{[constructed from } S^{**}\text{]}\]
\[\text{[converted from } S^{**}\text{ to } S^*\text{]}\]

$S^{**} \subset S^*$
\[\forall e \in S^{**}, e \in S^*\]
$S^* \subset S^{**}$
\[\forall e \in S^*, e \in S^{**}\]
$S^* = S^{**}$
\[\square\]
Consider the language S^*, where $S = \{aa \ b\}$. How many words does this language have of length 4? of length 5? of length 6? What can be said in general?

Consider the language S^*, where $S = \{aa \ aba \ baa\}$. Show that the words $aabaa, baaabaaa, and baaaaababaaaaa$ are all in this language. Can any word in this language be interpreted as a string of elements from S in two different ways? Can any word in this language have an odd total number of a’s?

Prove that for all sets S,

1. $(S^+)^* = (S^*)^*$
2. $(S^+)^+ = S^+$
3. Is $(S^*)^+ = (S^+)^*$ for all sets S?