
CSCI 406 – Advanced Web Development
Lab 5 – Angular Website

For this lab you will start with your Blogger application from Lab 4 as the basis and modify it to
move its front-end to AngularJS. All of your front-end code will be placed in a new app_client
directory. Lastly, you will publish this version of your application to your previously created
GitHub repository as a new branch named: “Lab 5”.

PUBLIC SERVICE ANNOUNCEMENT: Like the last lab, this lab will take some time. Expect to
spend at least 6 to 8 hours developing the AngularJS front-end and integrating it with the REST
API you have already written. You can rely on the Manning book and chapters 8, 9 and 10 if you
wish to pattern much of your code from it, or you can look online for more simple AngularJS
samples (recommended regardless which way you decide to go). Be warned, the book
examples and what is in the author’s Git repo for those chapters is not complete and, in many
cases, more complex than what you need in a front-end. Because of the reading, the digging,
the research needed, the trial and error you will likely encounter, and the coding and recoding
(always go for simpler, smaller code) required, this lab will take significant time.

DUE DATE: This lab is due to the instructor by Monday, October 26th at 11:59pm.

Instructions:
1. Using your Amazon Lightsail MEAN instance, make a copy of your previous Lab 4

application either using Linux copy commands or GIT commands to pull down the
previous application to a new (different than previous) directory.

2. Your application will be similar to the application you wrote in lab 4, it will use the REST
API from lab 4, but its front-end will be moved to AngularJS.

3. Your web application must adhere to the following specification:

Specification:

i. Port 80: Your application must load from a browser via port 80, which is the
standard HTTP port for a server.

ii. Add an “app_client” directory, port front-end to AngularJS: Your program
should be updated such that it includes all of the AngularJS code in this directory
and/or subdirectories. Note, the app_server directory will be obsolete and can
and should be removed.

The majority of your work will be spent figuring out how best to develop the
AngularJS front-end. Below are some hints/suggestions:

• KISS – Keep It Simple…. You really only need to author two files at a
minimum, more if you wish to break things up, but at a minimum the two
files below are acceptable:

1. index.html – This is the single-page application front-end, written
in HTML and supporting the AngularJS app. It is acceptable for this
one file to contain templates for each of your screens.

2. bloggerApp.js - This the angular app code and it includes the
“Router Provider”, other providers (for example a “State
Provider”), the needed controllers and the data access API
functions.

• Develop, test, update, repeat: Iteratively develop the front-end. First by
getting the index.html (or similar) written, working with bloggerApp.js (or
similar) and hooked up to an Angular “Router Provider” so that
navigation works with simple controllers. Then, add in the details for
each “screen” (list, add, edit, delete), and then hook up the REST API by
extending the controllers.

iii. Download Necessary Angular.js Libraries: Your front-end will likely require

several Angular .js (JavaScript) library files. Download those that are required
from a reputable source and place them within your app_client folder (or better
yet, a lib subfolder) and load them from there in your application.

iv. Consume existing REST API: Your AngularJS front-end should use the REST API

you developed prior for getting a list of blogs, adding a blog, updating a blog and
deleting a blog.

v. Testing: When finished you will have a single-page application (SPA) that performs
the following:

a) Show a list of blogs, allowing the user to click one to edit or delete

b) Add a new blog

c) Edit an existing blog and save it

d) Delete an existing blog (or cancel deletion)

Note: For the add, edit and delete case, your front-end should redirect back to
the listing page upon successful completion of the task at hand to show the
newly updated listing.

4. Your application must be setup to run even with your MEAN instance is not connected.

5. Using your GitHub account and the repository created and used prior and save this lab

as a new branch (“Lab 5”).

6. Below is the instructor’s example from Lab 4. Trust that a Lab 5 instructor’s example
does exist. If it were “stood up” and provided here, all the AngularJS front-end code
would be readily viewable and for that reason it is not being provided:

http://13.58.205.86/

7. Once you have the application working and it is available via port 80 even when

disconnected from your MEAN instance and you have your app uploaded to your GitHub
repo, please send the full URL of your app AND your GitHub repo to the instructor via
email with subject of “Lab5”. Important:

 mailto:thomas.rogers@millersville.edu?subject=Lab5

