iy E () 2
N5 8 SNBSS
SK - S
ALK == -
o =y | m————
=% W CHOY
S i
) ‘-“,, .
fh& T vé
=y

= (@) [®)
RiB

Aot o (G
ﬂt}zcgples of (_;oad Brogramming

with Numerous Examples o

Improve Frogramming (‘5}}’16 and Dhoficiency \--/1-
2

SR NRRE

=k R R

HAYDEN BOOK COMPANY, INC.

Rochelle Park, New Jersey

e rpp——

g r————

S—

R R s e B

To
To

To

To

To

To

To

To

Gﬁ% ACKNOWLEDGMENTS % -

Michael Flynn, my constant advisor at Johns Hopkins

Rao Kosaraju, whose friendship, intellect, and lightheartedness have beena
source of delight

Will Fastie, who conscientiously devoted his imaginative talents towards
writing the original draft of this work, and whose ready wit and energy
lightened the task

ILeslie Chaikin, whose hard work added significantly to the substance of
each chapter

Joseph Davidson, who admirably served as a consultant on some of the
deeper issues and who created some of the less forgotten lines

Lee Hoevel and Tan Smith, who contributed to a sound analysis of the
issues in programming

members of the Institute for Computer Science at the National Bureau of
Standards, who helped provide a solid intellectual environment for this
work

students, faculty, and secretaries in the Computer and Information Science
department at the University of Massachusetts.

Library of Congress Cataloging in Publication Data

Ledgard, Henry F
Programming proverbs.

(Hayden computer programming series)
Bibliography: P.
Includes index.
1. Electronic digital computErs——Prugramming.
1. Title.
QAT6.6. L1368 001, 6'424 74-22058
1SBN 0-8104-5522-6

Copyright © 1975 by HAYDEN BOOK COMPANY, INC. All rights reserved.
No part of this book may be reprinted, or reproduced, of utilized in any
form or by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying and recording, or in any infor-
mation storage and retrieval system, without permission in writing from
the Publisher.

Printed in the United States of America

3 4 5 6 7 8B 9 PRINTING

76 77 78 79 80 81 82 YEAR

Rt | i
Ji» FOREWORD &g

By necessity, computer science, computer education, and computer prac-
tice are all embryonic human activities, for these subjects have existed for only a
single generation. From the very beginning of computer activities, programming
has been a frustrating black art. Individual abilities range from the excellent to
the ridiculous and often exhibit very little in the way of systematic mental
procedure. In a sense, the teaching of programming through mistakes and
debugging can hardly be regarded as legitimate university level course work. At
the university level we teach such topics as the notion of an algorithm, concepts
in programming languages, compiler design, operating systems, information
storage and retrieval, artificial intelligence, and numerical computation; but in
order to implement ideas in any of these functional activities, we need to write
programs in a specific language. Students and professionals alike tend to be
over-optimistic about their ability to write programs or to make programs work
according to pre-established design goals.

However, we are beginning to see a breakthrough in programming as a
mental process. This breakthrough is based more on considerations of style than
on detail. It involves taking style seriously, not only in how programs look when
they are completed, but in the very mental processes that create them. In
programming, it is not enough to be inventive and ingenious. One also needs to
be disciplined and controlled in order not to become entangled in one’s own
complexities.

In any new area of human activity, it is difficult to foresee latent human
capabilities. We have many examples of such capabilities: touch typing, speed
writing, and 70-year-old grandmothers who drive down our highways at 70 miles
an hour. Back in 1900 it was possible to foresee cars going 70 miles an hour, but
the drivers were imagined as daredevils rather than as grandmothers. The moral is
that in any new human activity, one generation hardly scratches the surface of
its capabilities. So it will be in programming as well.

The next generation of programmers will be much more competent than
the first one. They will have to be. Just as it was easier to get into college in the
“good old days,” it was also easier to get by as a programmer in the “good old
days.” For this new generation, a programmer will need to be capable of a level
of precision and productivity never dreamed of in years gone by.

Loy e s R SR O S P i

The new generation of programmers will need to acquire discipline and
control, mainly by learning to write programs correctly from the start. The
debugging process will take the new form of verifying that no errors are present, ‘
rather than the old form of finding and fixing errors over and over (otherwise h
known as “acquiring confidence by exhaustion’). Programming is a serious
logical business that requires concentration and precision. In this discipline,
concentration is highly related to confidence.

' ' In simple illustration, consider a child who knows how to play a perfect
! game of tic-tac-toe but does not know that he knows. If you ask him to play for

| something important, like a candy bar, he will say to himself, “I hope I can

{ win.” And sometimes he will win, and sometimes not. The only reason he does
not always win is that he drops his concentration. He does not realize this fact
because he regards winning as a chance event. Consider how different the
situation is when the child knows that he knows how to play a perfect game of
tic-tac-toe. Now he does not say, “I hope I can win”’; he says instead, “I know I
can win; it’s up to me!” And he recognizes the necessity for concentration in
order to insure that he wins.

In programming as in tic-tac-toe, it is characteristic that concentration goes
hand-in-hand with justified confidence in one’s own ability. It is not enough
simply to know how to write programs correctly. The programmer must krow
that he knows how to write programs correctly, and then supply the concentra-
tion to match.

This book of proverbs is well suited to getting members of the next
. generation off to the right start. The elements of style discussed here can help
] 5 1 provide the mental discipline to master programming complexity. In essence, the
| ga i book can help to provide the programmer with a large first step on the road to a
- o o new generation of programming.

e s

Harlan D. Mills
Federal Systems Division, IBM
Gaithersburg, Md.

PREFACE

2
8

Several years ago I purchased a small book called Elements of Style
written by William Strunk, Jr. and revised by E. B. White. Originally conceived
in 1918, this book is a manual on English style. It is noted for its brevity, rigor,
and deeply rooted faith in concise, clear English prose. I have read this manual
several times. Each time I am again challenged to write better prose. In part, that
small book is the motivation for this work.

When I began teaching courses on programming languages, [was struck by
the tremendous need for style and quality in student programs. Reminded of
Strunk’s little book, I became concerned with the need to motivate an interest in
program quality. I believe that introductory programming courses should be
intimately and overtly concerned with elements of style in computer program-
ming. This concern was brought to fruition in the summer of 1972, when the
basic draft of this book was written. It was meant as a brief for people who write
computer programs and who want to write them well.

Recently, there has been an increasing concern within the computing
community about the quality of software. As a result, a new methodology is
emerging, a harbinger of further changes to come. The ideas presented in this
book depend heavily on the work of many competent researchers. Notable are
the works of Dijkstra, Mills, Strachey, Hoare, Wirth, Weinberg, Floyd, Knuth,
Waulf, and many others.

Several qualities other than academic ones have been deliberately sought
for in this book. First, there has been an attempt to be lighthearted. It is
primarily through a zest for learning that we do our best work and find it most
rewarding. Second, there has been the goal of being specific. The book is written
primarily in the imperative mood, and there are many examples.

This book is designed as a guide to better programming, not as an
introduction to programming. As such, it should be of value to programmers
who have some familiarity with programming but no great proficiency. The
book may thus be used as a supplementary text in undergraduate courses where
programming is a major concern. It should also be of value to experienced
programmers who are seeking an informal guide to the area of quality program-
ming. As an offshoot of its aims, I hope that programmers will begin to read and
analyze programs written by others and try to reduce the intellectual effort

W e S
| CONTENTS W

Chapter 1 Introductionc..oooooeieeens 1

Chapter 2 Programming Proverbso0oo 3
Proverb 1 Define the Problem Completely 5
Proverb 2 Think First, Program Later 10
Proverb 3 Use the Top-Down Approach 11
Proverb4 Beware of Other Approaches 13
Proverb 5 Construct the Program in
Logical Units 16
Proverb 6 Use Procedures 16
Proverb 7 Avoid Unnecessary GOTO’S 19
Proverb 8 Avoid Side Effects 24
Proverb 9 Get the Syntax Correct Now,
Not Later 26
Proberb 10 Use Good Mnemonic Names 27
Proverb 11 Use Intermediate Variables Properly 29
Proverb 12 Leave Loop Variables Alone 31
Proverb 13 Do Not Recompute Constants
within a Loop 32
Proverb 14 Avoid Implementation-Dependent
Features 33
Proverb 15 Avoid Tricks 35
Proverb 16 Build in Debugging Techniques 36
Proverb 17 Never Assume the Computer
Assumes Anything 38
Proverb 18 Use Comments 40
Proverb 19 Prettyprint 42
Proverb 20 Provide Good Documentation 43

Chapter 3

Chapter 4

Proverb 21 Hand-Check the Program before
Running It 44

Proverb 22 Get the Program Correct before Trying
to Produce Good Qutput 48

Proverb 23 When the Program Is Correct,
Produce Good Qutput 48

Proverb 24 Reread the Manual 48

Proverb 25 Consider Another Language 50

Proverb 26 Don’t Be Afraid to Start Over 5 1

Exercises 51

Top-Down Programming-.-:- 64
A Payroll Problem 67
Kriegspiel Checkers 77
Exercises 92
95

Miscellaneous Topics
Use of Mnemonic Names 95
Prettyprinting 98
Representation of Algorithms and
Tricky Programming 102
Procedures, Functions, and Subroutines 108
Recursion 116
Debugging Techniques 121
Some Parting Comments 125
Exercises 128

“The purpose of this here book is to learn programmers, especially them
who don’t want to pick up no more bad habits, to program good, easy, the
first time right, and so somebody else can figger out what they done and
why!’}

For those readers who appreciate diamonds in the rough, the paragraph
above represents this introduction as originally conceived. The following pages
merely display the same diamonds cut, polished, and in a fancier setting.

An indication of the current state of the art of computer programming is
the proud exclamation, “It worked the first time!” That this statement is
conceivable but rarely heard indicates one prime fact: writing programs that
work correctly the first time is possible but unusual. Since programmers un-
doubtedly try to write programs that work the first time, the question arises, “If
it is possible, why is it unusual?” The answer to this question is twofold: First,
programming is difficult, and second, there are very few standard methods for
developing and writing good programs. Since few standard methods exist, each
programmer must develop personal methods, often haphazardly. The success of
these ad hoc methods depends on how well-suited they are to the problem at
hand. For this reason the quality of programs varies not only between program-
mers, but also between programs written by the same programmer.

In reality, the state-of-the-art is considerably worse than is implied by the
fact that most computer programs do not work right the first time. While there
are many programs that never work at all, many more work only most of the
time. More importantly, of those that work correctly, many are difficult to
understand, change, or maintain.

This book is predicated on the thesis that programming is entering a new
and exciting era and that programmers can and should write programs that work
correctly the first time. For those who are accustomed to hours, days, or even

1

2 Programming Proverbs

weeks of debugging time, this goal might seem idealistic. However, I am com-
mitted to the idea that well-founded principles can be invaluable in achieving it.
Many important programming techniques are seldom obvious, even to experi-
enced programmers. Yet with a fresh approach, many programmers may be
surprised at the improvement in their ability to write correct, readable, well-
structured programs.

This book is also predicated on the thesis that the ideas presented here
should go hand-in-hand with learning any new computer language. The reader
who dismisses the overall objective of this book with the comment, “T’ve got to
learn all about my language first” may be surprised to find that the study of
good programming practices along with the basics of the language may reap
quick and long-standing rewards.

This book is organized in three major parts. Chapter 2 is a collection of
simple rules, called proverbs. The proverbs summarize in terse form the major
ideas of this book. Each proverb is explained and applied. A few references to
later chapters are made where various ideas are more fully explored.

Chapter 3 is an introduction to a strict top-down approach for program-
ming problems in any programming language. The approach is oriented toward
the writing of correct, modular programs. It should be read carefully, because
some of its details are critical and not necessarily intuitive. The approach, clearly
related to an approach called “Stepwise Refinement” (see Reference W4 in the
Bibliography) and an approach called “Structured Programming” (Ref. D1),
hinges on developing the overall logical structure of the program first. Specific
decisions, such as data representation, intermediate variables, and the like, are
delayed as long as possible in order to achieve maximum flexibility.

Chapter 4 elaborates on several techniques discussed in the chapter on
programming proverbs and contains a section on recursion as well. The use of
these techniques should make programs easier to read and understand. They
should also expedite error detection and program modifications should they
become needed.

ALGOL 60 (see Reference N1 in the Bibliography) and PL/I (Ref. Z3) are
used throughout the text, sometimes almost repetitiously. In a few ALGOL 60
programs, some simple, free-format input/output statements have been added to
the strict ALGOL 60 language.

The reader may observe the absence of flowcharts in this book. This
omission is deliberate. In the author’s opinion, the use of flowcharting tech-
niques as a method of program development has been overestimated, mainly
because flowcharts can readily lead to an undue preoccupation with flow of
control. The objective here is to emphasize numerous other programming tech-
niques that have little need for flowcharts, but it must be admitted that the
judicious use of flowcharts can be a valuable part of the programmer’s reper-
toire.

“Experience keeps a dear school, but fools will learn in no other”
Maxim prefixed to Poor Richard’s Almanack, 1757

Over two centuries ago Ben Franklin published his now familiar Poor
Richard’s Almanack. In it he collected a number of maxims, meant as a guide for
everyday living. Analogously, this chapter is intended as a simple guide to
everyday programming. As such, it contains a collection of terse statements that
are designed to serve as a set of practical rules for the programmer. In essence,
the programming proverbs motivate the entire book.

As with most maxims or proverbs, the rules are not absolute, but neither
are they arbitrary. Behind each one lies a generous nip of thought and experi-
ence. I hope the programmer will seriously consider them all. At first glance
some of them may seem either trivial or too time-consuming to follow. However,
I believe that experience will prove the point. Just take a look at past errors and
then reconsider the proverbs.

Before going on, a prefatory proverb seems appropriate.

“Do Not Break the Rules before Learning Them”

By their nature, the programming proverbs, like all old saws, overlook much
important detail in favor of an easily remembered phrase. There are some cases
where programs should not conform to standard rules, that is, there are excep-
fions to every proverb. Nevertheless, I think experience will show that a
programmer should not violate the rules without careful consideration of the
alternatives. '

A list of all the proverbs is given in Table 2.1. It is hard to weigh their
relative importance, but they do at least fall into certain categories. The relative
importance of one over another depends quite markedly on the programming
problem at hand.

g e e e e e

Programming Proverbs

Table 2.1 The Programming Proverbs

A=

88 o N

11,
12.
13.

14.
15
16.
1.

18.

19.
20.

21.
22

23.

24,
25.

Approach to the Program

DEFINE THE PROBLEM COMPLETELY
THINK FIRST, PROGRAM LATER

USE THE TOP-DOWN APPROACH
BEWARE OF OTHER APPROACHES

Coding the Program

CONSTRUCT THE PROGRAM IN LOGICAL UNITS
USE PROCEDURES

AVOID UNNECESSARY GOTO’S

AVOID SIDE EFFECTS

GET THE SYNTAX CORRECT NOW, NOT LATER
USE GOOD MNEMONIC NAMES

USE INTERMEDIATE VARIABLES PROPERLY
LEAVE LOOP VARIABLES ALONE

DO NOT RECOMPUTE CONSTANTS WITHIN A LOOP

AVOID IMPLEMENTATION-DEPENDENT FEATURES
AVOID TRICKS
BUILD IN DEBUGGING TECHNIQUES

NEVER ASSUME THE COMPUTER ASSUMES ANYTHING

USE COMMENTS
PRETTYPRINT
PROVIDE GOOD DOCUMENTATION

Running the Program
HAND-CHECK THE PROGRAM BEFORE RUNNING IT

GET THE PROGRAM CORRECT BEFORE TRYING TO PRODUCE

GOOD OUTPUT

WHEN THE PROGRAM IS CORRECT, PRODUCE GOOD OUTPUT

In General

REREAD THE MANUAL
CONSIDER ANOTHER LANGUAGE
DON'T BE AFRAID TO START OVER

Programming Proverbs 5

I must not close this introduction to the proverbs without noting why we
use the word, proverb, rather than the more accurate word, maxim. Proverbs and
maxims both refer to short pithy sayings derived from practical experience.
Proverbs, however, are usually wellknown, whereas maxims are usually not.
Admittedly, the programming proverbs are not popular sayings. However, the
title was chosen with an eye to the future, when hopefully some of these sayings
might become true programming proverbs. And, of course, I think that “Pro-
gramming Proverbs™ just sounds better!

Proverb 1 DEFINE THE PROBLEM COMPLETELY

At first glance, this proverb seems so obvious as to be worthless. As the
saying goes, “It’s as plain as the nose on your face.” True enough, but thereis a
tendency to take your nose for granted. Similarly, there is a tendency to assume
that a problem is well defined without really examining the definition. As a
result, all too often programmers begin work before they have an exact specifica-
tion of the problem.

Consider Example 2.1, which is stated in plain English. The statements
here range from the somewhat vague definition given in 2.1a, which even an
experienced cook would deem ambiguous, to that of 2.1d, which is so com-
pletely specified that even the average cook should be able to follow it easily.
Statement 2.1d even specifies 350°F, as opposed to 350°. Who knows, someone
just might have a centigrade oven.

Example 2.1 Successively Better Problem Definitions

Statement 2.1a Cook the chicken.

Statement 2.1b Roast the chicken.

Statement 2.1c Roast the chicken in a 350° oven until done.

Statement 2.1d Roast the chicken in an oven at 350°F. Roasting times

should be about 30 minutes per pound according to the
following timetable:

Weight Time

21b 1hr

2-31b 1-1% hr
3-41b 1%-2hr
4-51b 2-2%hr

More typically, consider the following simple program specification:

ks e T iy

—TE

=

6 Programming Proverbs

“Write a program that reads in a list of nonzero integers and outputs their
mean.”

At first glance, this specification sounds complete. On closer analysis, there
prove to be a number of vague points.

(1) How long is the list? If the length of the list is to be read in
explicitly, will the length be the first integer, or is the list terminated
by a blank line, a special symbol, or the number zero?

(2) What is the formula for the mean and what is to be printed if the list
is empty?

(3) Is the input free format or fixed format? If fixed format, what is it?

(4) What is the output to be? A message along with the mean? To how
many decimal places should the mean be computed?

In the real world, programmers are often given some latitude in the final
input/output characteristics of a program. Since all languages have rigid rules for
the execution of programs, programmers must be specific to the last detail. In
general, if something is left unspecified in the original definition, the pro-
grammer will eventually have to face the consequences. Changes made while
writing the program can be annoying and distracting. In addition, some of the
code already written may have to be scrapped due to oversights in the original
problem definition. As a result, any critical omitted information should be
defined by the programmer before programming. .

Consider next the definition of Example 2.2a. Certain questions remain
unanswered, for example, the form of the input data, the form of the check
stub, and the formulas for calculating the gross and net pay. More importantly,
the problem is partly defined by a specific algorithm stating the order of the
calculations. This kind of definition should be avoided unless the implementa-
tion of a specific algorithm is actually part of the problem. The specification of
an unnecessary algorithm clouds a program specification and restricts the class of
possible solutions. A better definition is given in Example 2.2b.

Example 2.2 Proposed Definitions of a Payroll Problem

2.2a Poor Problem Definition

Read an employee data card.
Calculate gross pay.
Calculate net pay by deducting
4% taxes and 1.75% for social security
Print a payroll stub for the employee >
If there are more cards,
then go back and repeat the process,
otherwise exit the program.

Programming Proverbs 4

2.2b Better Problem Definition

Input: A sequence of employee data cards with the following data:

Columns Meaning Format
1-5 RATE of pay per hour dd.dd
11-15 HOURS worked per week dd.dd

Output: A payroll stub for each employee, printed according to the
following format:

line 3 » PAYROLL STUB

line 12 ~ RATE HOURS GROSS NET
line 14 — dd.dd dd.dd ddd.dd ddd.dd
T 1 t i+
col 5 col 20 col 35 col 50
Rate of Hours Gross Net
pay worked pay pay

NETPAY = RATE * HOURS * (1 —0.04 —0.0175)

As a third example, consider the definition of Example 2.3a, which defines
a program to aid a prospective homeowner in determining the financial arrange-
ments of a mortgage loan. This definition is quite adequate, but on close analysis
certain points need to be resolved. The formula that relates the values of the
principal, interest rate, number of years, and monthly payment may not be
readily available to the programmer. The formats for the input and output are
not exactly clear, and several exceptional conditions that can arise in the
computation are not mentioned. The definition of 2.3b resolves each of the
above issues. It is a bit long, but far more precise than the definition of 2.3a.

Example 2.3 Proposed Definitions of a Viortgage Problem

Example 2.30 Adequate Problem Definition

We wish to devise a program to help potential home-owners consider the
finances of mortgaging a home. There are four basic factors to be considered:
the principal, the interest rate, the number of years for the mortgage, and the
monthly payment. The program must input values for any three of the above
quantities, output the fourth quantity, and also output a table indicating how
the amount of the first monthly payment of each year is divided between
principal and interest.

8 Programming Proverbs

1 The input to this program is a line (or card) containing three of the above
it L four figures:

! | Columns Quantity

. 1-5 Principal

8-11 Interest rate

i | 14-15 Number of years

i ‘ 1822 Monthly payment

i | The principal and number of years are given as integers, the interest rate and | e
5 monthly payments are given as fixed-point real numbers. The missing quantity is
given as an integer or fixed-point zero.
The output is to be a line indicating the value of the missing quantity, and
[, a table giving, for the first monthly payment of each year, the amount con-
L i tributed to decreasing the principal and the amount paid as interest.

! Example 2.3b Better Problem Definition B |

|

(1) Problem Outline: We wish to devise a program to help potential home- ‘
owners consider the finances of mortgaging a home. There are four basic factors

|

|

to be considered:

P The principal amount of the mortgage

I The yearly interest rate for the mortgage

N The number of years for the duration of the mortgage

M The (constant) monthly payment required to pay back the
principal P over N years at the interest rate [

\
The above quantities are related by the equation: ' !

M= P*i=(1+i)n |
()" —1 ,
< where |
. i = I/I2 = monthly interest rate
fd n = 12*N = number of monthly periods in N years

Briefly, the program is to input any three of the above quantities, compute
g | and print the fourth quantity, and also print a table specifying how the first
| monthly payment of each year is divided between interest and principal.

(2) Input: The input to this program is a line (or card) of the form

column 1 8 14 18
A { 1 {
ddddd ddd dd ddd.dd
P I N M

Programming Proverbs

e where the d’s represent decimal digits such that
P = the principal in dollars
[= the percentage interest rate computed to two decimal places
N = the number of years in integer form '
M = the monthly payment in dollars and cents
The value of P, I, N, or M to be computed is given as zero. Leading zeros
for any value may be replaced by blanks. +
;_1 (3) Output: The output from the program is to consist of two parts:
(a) The value to be computed using one of the formats:
. PRINCIPAL = $ddddd
i INTEREST RATE = ddd
NUMBER OF YEARS = dd
MONTHLY PAYMENT = $ddd.dd

N
(b) A table giving for the first monthly payment of each year the amount
paid to principal and the amount paid to interest. The headings and formats for
the table values are as follows:

YEAR AMT PAID TO PRINCIPAL AMT PAID TO INTEREST
dd $ddd.dd $ddd.dd

Leading zeros for any value should be replaced by blanks.

(4) Exceptional Conditions: Tf any of the input values are not of the prescribed
format, or if any output value is not in the range indicated, the program is to
print an appropriate message to the user.

(5) Sample Input:

20000 800 22 00

~ (6) Sample Output for Above Input:
N MONTIHLY PAYMENT = $154.36
YEAR AMT PAID TO PRINCIPAL AMT PAID TO INTEREST

1 21.03 133.33
" 2277 131.59

10 Programming Proverbs

One important point of Example 2.3b is the inclusion of a sample of the
input and output. Often a sample printout can be of great value to a computer
programmer in giving a quick synopsis of the problem. In addition, a sample
printout can often prevent surprises in cases where the program turns out to be
quite different from the expectations of the person defining the problem. If a
programmer is not given a sample of the input/output, he or she should try to
provide a sample before programming.

Before closing this discussion, one critical point must be emphasized. In
practice, a programmer is often given a somewhat vague problem description and
left with decisions about input/output headings, the treatment of exceptional
conditions, and other factors. In such cases, the programmer should not begin
the program until all of these alternatives have been considered and resolved.

In summary, starting the program with a fully defined problem gives a
programmer a solid head start. This is the first proverb because it should be the
Jirst programming consideration.

Proverb 2 THINK FIRST, PROGRAM LATER

This proverb is intimately connected with a clear definition of the prob-
lem. The essence is to start thinking about the program as soon as possible, and
to start the actual programming process only when the problem has been well
defined and you have chosen an overall plan of attack.

Consider the first part of the proverb: Think means think—do not pro-
gram! Examine the problem carefully. Consider alternative ways to solve the
problem. Consider at least two different approaches. Examine the approaches in
sufficient detail to discover possible trouble spots or areas in which the solution
is not transparent. A top-notch program requires a top-notch algorithm. Firss
means Immediately—before programming. Start thinking as soon as possible,
while the problem is fresh in your mind and the deadline is as far away as it will
ever be. It is much easier to discard poor thoughts than poor programs.

The second part of the proverb is program later. Give yourself time to
polish the algorithm thoroughly before trying to program it. This will shorten
the programming time, reduce the number of false starts, and given you ample
time to weed out difficult parts.

A common violation of this proverb lies in a phenomenon that we shall
call the “linear” approach. In the linear approach, a programmer receives a
problem and immediately starts typing or punching the code to solve it. Such an
attack quickly leads to errors and patches to cover easily made mistakes. Avoid
the linear approach unless you are sure the problem is really easy.

Remember Murphy’s law of programming: It always takes longer to write
a program than you think. A corollary might be: The sooner you start coding
your program (instead of thinking), the longer it will take to finish it.

o —_

Programming Proverbs 11

Proverb 3 ~ USE THE TOP-DOWN APPROACH

One major point of this book is to advocate the “top-down” approach to a
programming problem The top-down approach advocated here is probably not
like conventional methods of programming. Furthermore, the top-down ap-
proach is itself subject to several interpretations, some of which we disagree
with. Top-down programming is discussed at length in Chapter 3. The following
description of the top-down approach is an excerpt from that chapter:

1. Exact Problem Definition:
The programmer starts with an exact statement of the problem. It is senseless to
start any program without a clear understanding of the problem.

2. Initial Language Independence:
The programmer initially uses expressions (often in English) that are relevant to
the problem solution, even though the expressions cannot be directly trans-
literated into the target language. From statements that are machine and lan-
guage independent, the programmer moves toward a final machine implementa-
tion in the target language.] :

3. Design in Levels:
The programmer designs the program in levels. At each level, the programmer
considers alternative ways to refine some parts of the previous level. The
programmer may look a level or two ahead to determine the best way to design
the present level.

4. Postponement of Details to Lower Levels:
The programmer concentrates on critical broad issues at the initial levels and
postpones details (for example, input/output headings, choice of identifiers, or
data representation) until lower levels,

5. Insuring Correctness at Fach Level:
After each level, the programmer rewrites the “program” as a correct Sformal
Statement. This step is critically important. The program must be debugged to
insure that all arguments to unwritten procedures or sections of code are then
explicit and correct. Further sections of the program should be able to be
written independently, without later changing the specifications or the interfaces
between modules. The importance of being complete and explicit at each level is
by far the most misunderstood aspect of the top-down approach.

6. Successive Refinements:
Each level of the program is successively refined and debugged until the pro-
Brammer obtains the completed program in the target language.

Consider Example 2.4, which gives the initial levels of the design of a small
Payroll problem presented in Chapter 3. After examining the problem in detail
the programmer makes a general statement of the program, P, . After further
consideration, he decides on the overall approach to the program and obtains the

12 Programming Proverbs

Example 2.4 Use of the Top-Down Approach in a Payroll Problem

o

Process the Payroll Cards

s

Initialize for program

A: read next employee card

if no more data

then calculate and print average hours worked
stop

else process the card and check
update for weekly average
8o back to (A) for next employee

Fa
/* Initialize for program */
_ TAXRATFE. = 0.04
S5 RATE = 0.0175
_TOTAL_HOURS = 0.0
NOS_EMPLOYEES = 0

/* read next employee card */
read CARD into (NAME, SS _NUM, WAGE, HOURS)

if no more data

then /* calculate and print average, and stop */
AVERAGE = TOTAL_HOURS/NOS_EMPLOYEES
print (AVERAGE)

stop

else /* process the card and check */
GROSS_PAY = WAGE*HOURS

NET_PAY = GROSS PAY - GROSS PAY*TAXRATE ~ GROSS PAY*SS RATE

print (NAME, NET PAY, SS NUM) on check stub

/* update for weekly average */
TOTAL_HOURS = TOTAL_ HOURS + HOURS
NOS_FMPLOYEES = NOS_EMPLOYEES + 1

/* tepeat for next employee */
goto A

13

Programming Proverbs

more detailed description of P, . The programmer now takes another step and
refines the statements of P, into the more formal description of P,. The
“program” of P, explicitly specifies the decisions made in P, . Each level is in
some sense complete, and can be debugged as if it had been written in an actual
programming language. While these initial levels are not yet written in
the particular target language, successive refinements will take care of that.
Top-down programming has two distinct advantages. First, it initially frees
a programmer from the confines of a programming language and allows him to
deal with more natural constructs. Second, it leads to a structured modular
approach, which allows the programmer to write statements relevant to the level
of detail he is seeking. The details can be specified later in separate modules. In
fact, the entire goal of top-down programming is just that: to aid the pro-
grammer in writing well-structured, modular programs.

Proverb 4 BEWARE OF OTHER APPROACHES

Traditionally, programmers have used many different approaches to a
program. Consider the following list:

(1) Bottom-up approach
(2) Inside-out or forest approach

(3) Linear approach

(4) Typical systems analyst approach
(5) Imitation approach

In the “bottom-up” approach, the programmer usually writes the lower
procedures first and the upper levels later. The bottom-up approach is (with
some critical exceptions) the mirror image of the top-down approach. It suffers
severely from requiring the programmer to make specific decisions about the
‘program before the overall structure is understood.

In between the top-down and the bottom-up approaches, we have the
““inside-out” or “forest” approach, which consists of starting in the middle of
, ¢ program and working down and up at the same time. Roughly speaking, it

~ goes as follows:

1. General Idea:
we decide upon the general idea for programming the problem.

A Rough Sketch of the Program:

> write any “important™ sections of the program, assuming initialization
orm. In some sections we write portions of the actual code. In doing
‘the actual intent of each piece of code may change several times, so that
ur sketch may need rewriting.

