
Text Processing, do/while, Fencepost
Algorithms, boolean Type, User

Errors and Assertions
CSCI 161 – Introduction to Programming I

Professor Thomas Rogers

Overview
� Reading: Chapter 5 - Program Logic and Indefinite Loops

� Topics:

� Text Processing

� do/while

� Fencepost Algorithms

� boolean Type

� User Errors and Assertions

Text Processing
� Text Processing - Editing and formatting strings of

text.

� The char type - Primitive data type char represents
a single character of text:

char ch = 'A';

Text Processing (continued)
� Differences between char and String

Text Processing (continued)
� Can declare and assign a char variable to an escape

sequence:

char newline = '\n’;
char tab = '\t’;
char quote = '\"';

� Values of type char are stored internally as 16-bit
integers using a standard encoding scheme called
Unicode.

Text Processing (continued)
� Java automatically converts a value of type char into

an int whenever it is expecting an integer.

char letter = 'a' + 2; // stores ‘c’

� Note: 'a' is Unicode value 97. Thus 2 more is 99, or 'c’.

� Can also convert the other way, but requires a cast:

int code = 66;
char grade = (char) code; // stores 'B'

Text Processing (continued)
� Cumulative Text Algorithms - Often need to examine a string

character by character.

� For example, count the number of times a given character is in
a string:

public static int count(String text, char c) {
int found = 0;
for (int i = 0; i < text.length(); i++) {

if (text.charAt(i) == c) {
found++;

}
}
return found;

}

Text Processing (continued)
� Character class - Contains many static methods that accept

a char parameter.

� Methods include:

� getNumericValue(ch) - Converts passed in character that is a digit into a
number (e.g. '6' returns 6).

� isDigit(ch) - Returns a boolean indicating if the character passed in is a
digit.

� isLetter(ch) - Returns a boolean indicating if the character passed in is a
letter ('a' - 'z' or 'A' - 'Z').

� isLowerCase(ch) - Returns a boolean indicating if the character passed in
is lowercase.

� isUpperCase(ch) - Returns a boolean indicating if the character passed in
is uppercase.

� toLowerCase(ch) - Returns the lowercase version of the passed in
character.

� toUpperCase(ch) - Returns the uppercase version of the passed in
character.

Text Processing (continued)
� System.out.printf - Used similarly to print and println

but provides much more flexibility in formatting (the "f"
stands for formatting).

� Syntax:

System.out.printf(<format string>,
<parameters>,
...,
<parameters>);

� format string - Like a normal string, but contains
placeholders called format specifiers that indicate a location
where a variables value should be inserted along with the
format to use.

� parameters – Replacement variables, values, expressions
that are used to ”fill in” specifiers within the format string.

Text Processing (continued)
� format specifiers - Begin with a % sign and end with a letter

specifying the type of value, such as d for integers, f for
floating-point numbers (real numbers of type double).

� Common Format Specifiers:
� %d - Integer

� %8d - Integer, right-aligned, 8-space-wide field

� %-6d - Intever, left-aligned, 6-space-wide field

� %f - Floating-point number

� %12f - Floating-point number, right-aligned, 12-space-wide
field

� %.2f - Floating-point number, rounded to nearest hundredth
(aka 2 decimal points)

Text Processing (continued)
� Common Format Specifiers (continued):

� %16.3f - Floating-point number, rounded to nearest
thousandth, 16-space-wide field

� %s - String

� %8s - String, right-aligned, 8-space-wide field

� %-9s - String, left-aligned, 9-space-wide field

� %c - character

� %3c - character, right-aligned, 3-space-wide field

� %-4c - character, left-aligned, 4-space-wide field

Text Processing (continued)
� printf exercise - Variables color1, color2,...

through color6 have names of colors. Print the
names out in columns like so:

red yellow green
purple pink orange

System.out.printf(
"%10s %10s %10s\n%10s %10s %10s\n",
color1, color2, color3, color4,
color5, color6);

do/while
� do/while - a variation of the while loop.

� Useful in situations in which you know your
program needs to execute a loop at least once.

� Syntax:

do {
<statement>
...
<statement>

} while (<test>);

Fencepost Algorithms
� Fencepost algorithm - A common programming

problem that requires a kind of loop known as a
fencepost loop because the problem requires
actions/items at the beginning and end of the loop.

� Consider a fence: posts need to be at the beginning
and end with wire in between.

Bad - End up with trailing wire and no last post:

for (the length of the fence) {
plant a post.
attach some wire.

}

Fencepost Algorithms (continued)
� Better - Note the reversal (re-ordering) of the

actions:

plant a post.
for (the length of the fence) {

attach some wire.
plant a post.

}

Fencepost Algorithms (continued)
� Consider the need for a loop that writes out 10

numbers separated by commas, as so:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

The code - note the printing of first item outside the
loop then second action first inside the loop, and
change in starting i value:

System.out.print(1); // plant post
for (int i = 2; i <=10; i++) {

System.out.print(", "); // attach wire
System.out.print(i); // plant post

}

Fencepost Algorithms (continued)
� Variation: Fencepost with if - An alternative to the

fencepost in which the first post is not planted
before the loop, but within, and then wire attached
conditionally.

� Pseudocode:

for (the length of the fence) {
plant a post.
if (this isn't the last post) {

attach some wire.
}

}

Fencepost Algorithms (continued)
� Consider the previous problem - outputting:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

� Code:

for (int i = 1; i <=10; i++) {
System.out.print(i); // plant post
if (i != 10) {

System.out.print(", "); // attach wire
}

}

boolean type
� Named after George Boole. A primitive data type

that can have the values true or false.

� The basic logical flow of algorithms in Computer
Science rely on booleans.

� if/else conditionals, for and while loops are each
controlled by expressions that specify a test and
that test results in true or false - boolean values.

boolean type (continued)
� Logical Operators:

boolean type (continued)
� Truth Table for NOT (!):

boolean type (continued)
� Truth Table for AND (&&)

boolean type (continued)
� Truth Table for OR (||):

boolean type (continued)
� Java Operator Precedence (with logical operators):

boolean type (continued)
� Short-Circuited Evaluation - The property of the

logical operators && and || that prevents the
second (and subsequent) operator from being
evaluated if the overall result is obvious from the
value of the first operand.

� Consider these two simple rules:

� If the current evaluation is true and the remaining logical
operators are OR (||) then the overall expression is true.

� If the current evaluation is false and the remaining logical
operators are AND (&&) then the overall expression
is false.

boolean type (continued)
� boolean Methods - A method that returns a boolean value;

usually used within your program in conditionals and to
carry out program logic. See "Boolean Zen" section from
book.

� Example: Return boolean indicating if integer is two digits
and both unique:

OK:

public static boolean isTwoUniqueDigits(int n) {
if (n >= 10 && n <= 99 && (n % 10 != n / 10)) {

return true;
} else {

return false;
}

}

boolean type (continued)
� Better:

public static boolean isTwoUniqueDigits(int n) {
return (n >= 10 && n <= 99 &&

(n % 10 != n / 10));
}

boolean type (continued)
� Negating Boolean Expressions

� A boolean expression including && and/or || that you
wish to negate (because maybe you only want to use it
in a conditional when the expression is NOT true) can
be expressed with the negation operator (!) or be
rewritten in a simplified manner.

� The simplification is down with two rules, known
as DeMorgan's Law, such that when simplifying:

� Each operand is negated: == becomes !=, < becomes >=;
> becomes <=, etc.

� Each logical operator is negated (&& becomes || and
vice-versa)

boolean type (continued)
� Some practice - Simplify the following via

DeMorgan's Law:

!(str == null || x >= str.length())
// Not (null string object or loop counter
// greater than string length)

!(n >= 1 && n <= 9) // Not a single digit number

User Errors and Assertions
� User Errors (Section 5.4)

� Please read the section on your own.

� Assertions (Section 5.5)
� Please read the section on your own.

