
User Input, Parameters, Methods that
Return Values, Conditional Execution,
Indefinite Loops, Commenting Style

CSCI 161 – Introduction to Programming I
Professor Thomas Rogers

Overview
� Reading: Chapter 3 - Introduction to Parameters and

Objects, Chapter 4.1, Chapter 5.1

� Topics:

� User Input

� Parameters

� Methods that Return Values

� Conditional Execution

� Indefinite Loops

� Commenting Styles

User Input
� Input with the user is done through what is

called standard input, which is a fancy way of saying
the user typing in entries on the keyboard.

� User input is also called Console Input - responses
typed by the user when an interactive program
pauses for input.

� For the most part in this class we will be dealing
with "line at a time" entry, meaning your programs
will get and process a single line of input from the
user at a time. Again, a single line of input is
everything the user types up until the return key is
pressed.

User Input (continued)
� The Scanner class is used for user input handling:

� Before the Scanner class may be used, it must be
made known to your Java program. This is done by
using the import statement at the top of your
program, like so:

import java.util.Scanner;

User Input (continued)
� To use the Scanner class create an object instance

and pass in the type of scanner instance you desire:

Scanner console = new Scanner(System.in);

� Where the object variable of the Scanner class instance is
identified as console. (Could be any name).

� The new keyword is used to indicate a new instance of an
object is to be instantiated.

� The parameter System.in is passed to the constructor of
the object indicating the IO stream to use (standard
input).

User Input (continued)
� The Scanner object has methods that control how it

reads input:

User Input (continued)
� Token - A single element of input (e.g. one word, one number) separated

by whitespace.

� Whitespace - Spaces, tab characters, and new line characters.

� WARNING: If your program executes the nextInt() method of the Scanner
object and the user types in something other than an integer you
program will generate an exception (run-time error).

� WARNING: Your programs should create one Scanner object in the main
method and pass it to methods that need to read input. Attempting to
create the Scanner object within a method that is called successively will
work when processing user input, but will not work when a file is
redirected to standard input (which is how your labs are run when
grading).

� WARNING: Your program should not declare its Scanner object within a
loop, even a loop within the main method. Your program will work with
user input from the Console but not with input from file redirection (how
your program is graded) if your Scanner is declared in a loop.

User Input (continued)
� Redirecting a file to standard input is how your labs and

assignments that require input will be run when graded. You
should create your own data files for input and redirect them to
your running program with the following syntax and test prior to
submitting:

java Lab2 < myData.txt

Where in the above, myData.txt is the text file containing your
input data for testing.

� Always prompt the user with a meaningful prompt telling the user
what type of input your program needs and any special values
before using the scanner to get the input, as shown below:

System.out.print("\nEnter a number of seconds: ");
int seconds = console.nextInt();

Parameters
� Formal parameter - a variable that appears inside parentheses

in the header of a method that is used to generalize the
method's behavior (aka "parameter").

� Actual parameter - a specific value or expression that appears
inside parentheses in a method call (aka "argument")

� A method can have zero, one or more parameters as so:

public static void foo()...

public static void bar(int num)...

public static void fubar(int num, String name)...

� When a method has multiple parameters, it is important to
supply arguments to it in the correct order, with each having
the correct data type when calling said method.

Parameters (continued)
� Limitations of Parameters: Arguments passed into a

method can be used within the method and their values
changed within the method, but any changes to said
values are not reflected in the variable outside the
method. In programming language terms this is what is
known as parameters that are passed by value.

� Method Overloading: The ability to define two or more
different methods with the same name but different
method signatures, where the signature is the name of
the method along with its specific combination of its
number of parameters and their types.

Methods that Return Values
� One way to overcome the "pass by value" aspect of Java

method parameters is to use method return values:

// Bad method
public static void upperCase(String str) {

str = str.toUpperCase();
}

String str = "hello";
upperCase(str); // Nope - str remains "hello”

// Good method
public static String upperCase(String str) {

return str.toUpperCase();
}

String str = "hello";
str = upperCase(str); // This works.

Methods that Return Values
(continued)

� Void methods do not and cannot return any values.

� The return value is returned by your method through the use
of the return statement.

� No code (or statement) below (after) the return statement
executes within your method, even if within a conditional or
loop.

� Methods that return booleans: It is often useful to define
methods that return booleans to aid in the conditional
execution and logic of your program. For example:

public static boolean isValidInput(String str)...

returns true if the supplied string is valid, else it returns false.

Conditional Execution
� One of the cornerstones of almost any useful program is its use

of conditionals to drive different logical pathways of its
execution. In other words, your programs will have some code
that you want to run some of the time, under certain
conditions or when encountering certain input and other times,
with other conditions and other input you want some othe
code to be executed or maybe no code at all to be executed.

� if/else The if/else statements provide the conditionals for just
such execution.

� Sample if statement:

if (currentScore > maxScore) {
System.out.println("A new high score!");
maxScore = currentScore;

}

Conditional Execution (continued)

� Basic syntax is:

if (<test>) {
<statement>;
<statement>;

...
<statement>;

}

� If the test logical expression evaluates to true then the
controlled statements are executed and if not the
program execution continues with statements after the
controlled statements (after the closing curly brace).

Conditional Execution (continued)

� The else statement is optional but when used in association with
the if provides a structure for defining the controlled statements to be
executed when the test expression evaluates to false, like so:

if (<test>) {
<statement>;
<statement>;

...
<statement>;

} else {
<statement>;
<statement>;
...

<statement>;
}

� IMPORTANT: Always include the curly braces for if and else statements
even if there is only one controlled statement.

Conditional Execution (continued)

� The if/else statement can use Relational Operators to
define the logical expression that is evaluated:

<expression> <relational operator> <expression>
numChars < MAX_LENGTH
x >= 4

� LOOK IN THE BOOK! See tables 4.1 and 4.2 in book for
list of relational operators, Java operator precedence and
examples.

� LOOK IN THE BOOK! Read up on nested if/else
statements, how they work, why to use them (especially
table 4.3).

Indefinite Loops
� Sometimes, when reading from a file, or when getting

user input the amount of input to be entered is not
known by your program. For example, a program that
asks for any number of integers to be input by the user
and are then added will require some type of loop
construct that runs indefinitely (as compared to definite
loops which we will discuss later).

� The while loop is one such is one such indefinite loop
and has the following general syntax:

while (<test>) {
<statement>;
<statement>;
...
<statement>;

}

Indefinite Loops (continued)
� Diagram:

Indefinite Loops (continued)
� An example is as follows:

int number = 1;
int max = 10;
while (number <= max) {

System.out.println("Hi there");
number++;

}

Indefinite Loops (continued)
� Can create an infinite while loop, and in which case

make sure to use the break statement to exit the
loop:

int number = 1;
int max = 10;
while (true) {

System.out.println("Hi there");
number++;
if (number>max) {

break;
}

}

Commenting Styles
� Proper commenting of your Java programs makes them much

more readable, easier to follow and easier to maintain in the
future.

� Commenting style and conventions are important and should
become second nature.

� Proper commenting conventions must include
comment tombstones before each class, each method and
optionally before groups of like statements (e.g. constants,
class variables, etc.).

� Adopting an appropriate style, like this one based
on Javadoc is important.

� IMPORTANT: Going forward, all future labs and assignments
that are submitted must adhere to a commenting style and
convention like the one shown.

comment_template.html
http://www.oracle.com/technetwork/articles/java/index-137868.html

