
String Class, Output and
Static Methods

CSCI 161 – Introduction to Programming I
Professor Thomas Rogers

Overview
� Related reading: Section 3.3

� Topics:

� String class

� Output

� Identifiers and Keywords

� Static Methods

� Pitfalls

� Procedural Decomposition

String Class

� Strings, which are widely used in Java programming, are a
sequence of characters. In Java programming language,
strings are treated as objects.

� The most direct way to create a string is to write
String greeting = "Hello world!";
Note: Strings are literals within double quotes and cannot
span multiple lines.

� Methods used to obtain information about an object are
known as accessor methods. One accessor method that you
can use with strings is the length() method, which returns
the number of characters contained in the string object.

String Class (continued)

� You can concatenate strings with the + operator, or the .concat() method:

String string1 = "Hey";
String string2 = " now";
string1.concat(string2);
System.out.println(string1); // Maybe not what is expected
string1 = string1.concat(string2);
System.out.println(string1); // Interesting!

� Strings are immutable, meaning they don't actually change. The only way
to change them is to re-assign them which causes a new object and new
String in memory.

� Compare and contrast that to StringBuffer which is mutable and allows
for in-place updating of a string:

StringBuffer b = new StringBuffer("Hello");
System.out.println(b); b.append(", world!");
System.out.println(b);

String Class (continued)

� One of the really cool methods of the String class
is format():

String fs; fs = String.format("The value of the
float variable is " + "%f, while the value of
the integer " + "variable is %d, and the string
" + "is %s", floatVar, intVar, stringVar);
System.out.println(fs);

� toUpperCase() - a method that uppercases the string.

� indexOf() - a method that determines if a specific character
is contained withing the string.

� A great overview of the String class along with its various
methods here:
https://www.tutorialspoint.com/java/java_strings.htm

https://www.tutorialspoint.com/java/java_strings.htm

Output
� Output is done through the System class.

� The System class contains several useful class
fields and methods. It cannot be instantiated.
Among the facilities provided by the System
class are standard input, standard output, and
error output streams; access to externally
defined properties and environment variables;
a means of loading files and libraries; and a
utility method for quickly copying a portion of
an array.

� System.out has println and print methods for
output to standard output (aka "the console").

Output (continued)

� println - Used to output a single line of text.

� print - Used to output data to the current line
without including a new line. Repeated calls
will place output on the same line.

� Escape sequences:
� \t - tab character
� \n - new line character
� \" - quotation mark (double quote)
� \\ - backslash character

Identifiers and Keywords
� identifier - a name given to an entity in a program such as a class,

methor or variable.

� Can start with a letter followed by any letter or number.

� Can also include an underscore _ or dollar sign $.

� Cannot include plus sign +, minu sign/hyphen -, space or start with a
number.

� Conventions:
� Class names - Start with a capital, then lowercase. e.g. Product
� Method names - start with lower case then capitalize the first letter of each new

word (aka camel case). e.g. addProduct
� Constant names - All upper case with underscores between words. e.g.

MAX_LENGTH
� Variable names - Camel Case, with our without data type prefix. (more on that

later). e.g. intTotalCost, or totalCost.

Identifiers and Keywords (continued)
� Java Keywords (aka Reserved Words):

abstract default goto package this assert do
if private throw boolean double implements
protected throws break else import public
transient byte enum instanceof return true
case extends int short try catch false
interface static void char final long strictfp
volatile. class finally native super while const
float new switch continue for null
synchronized

Static Methods
� A static method of a class can be called without an instance of

the class existing.

� For example:

System.out.println("Hello"); // println is a
static method
System.out.println("Length of the word car is: "
+ "car".length()); // length method of String
class not static (is an instance method)

� For our first few labs you will deal exclusively with static
methods.

� More on static methods vs instance methods in future lectures.

Pitfalls
� Three general types of programming errors:

� Syntax Errors - The programming equivalent of bad
grammar. These are caught by the Java compiler.

� Runtime Errors - An error in your program that occurs
while it is running that is so severe the Java VM stops
your program from executing. An example is dividing
by zero. These errors may often be avoided with
proper error handling.

� Logic Errors (aka "bugs" or "defects") - Your code is
syntactically correct and it runs without error but does
not perform the tasks you intend it to. These errors
are often much harder to find.

Pitfalls (continued)

� Syntax Errors - a list of common syntax errors are:

� File name does not match class name.

� Misspellings - a misspelled class, method or variable
name, or even a mis-match in case.

� Missing semicolon.

� Forgetting a required keyword: (static on a method,
method return type, etc).

� Not closing a String Literal or Comment.

Procedural Decomposition
� Procedural Decomposition - A separation into

discernible parts, each of which is simpler than the
whole.

� Cake example:
� Make the batter
� Bake the cake
� Make the frosting
� Frost the cake

� However, making the batter may require sub-tasks:
� Mix the dry ingredients
� Cream the butter and sugar
� Beat the eggs, beat eggs into creamed mixture
� Stir dry ingredients into wet mixture

Procedural Decomposition
(continued)

� In Java, the easiest way to separate a problem into
parts is through the use of methods.

� Iterative Enhancement - The process of producing a
program in stages, adding new functionality at each
stage. A key feature is that you test as you go.

� * Some materials from www.tutorialspoint.com.

http://www.tutorialspoint.com/

