Object-Oriented
Programming (OOP)
Advanced Topics

CSCI 161 - Introduction to Programming |

Professor Thomas Rogers

T —

Overview

e Chapter 8 in the textbook “Building Java Programs”,
by Reges & Stepp.

® Object Constructors — Advanced
e Using Objects in a Method
® Object Encapsulation

® (Class Invariant

® |[nheritance

Object Constructors -
Advanced

® Constructor — A method having the same name as
the Object class.

* Default Constructor — Always include the default
constructor (no params) even if just to give state
variables their initial values.

® Multiple Constructors — You can include multiple
constructors, each with different parameter sets,
each with a different purpose.

Object Constructors —
Advanced (continued)

® Multiple Constructors — A class with multiple constructors:

public class Point ({

/** Fields (aka State variables) **/
int x;
int y;

/** Constructors **/
// constructs a point with a location of 0, O
public Point () ({
x =0;
y = 0;
}

// constructs a point at a given location

public Point(int x, int y) ({

this.x = x; =
this.y = y-; '

Using Objects in a Method

® Using Objects in a Method - For example, the main method:

public static void main(String[] args) {

// Declare two points

Point pl = new Point(); // Uses default
constructor
Point p2 = new Point(3, 2); // Uses alt constructor

System.out.printf (“pl.x=%d pl.y=%d\n”, pl.x, pl.y);
System.out.printf (“p2.x=%d p2.y=%d\n”, p2.x, p2.y);

p2 = pl; // p2 object now set to pl.
pl.x = 5;
System.out.printf (“p2.x=%d p2.y=%d\n”, p2.x, p2.y);

will be printed?

Object Encapsulation, etc.

e Encapsulation - Hiding the implementation details of an
object from the clients (callers) of the object:

® Make the state fields of the class private

® Provide accessor and mutator methods for accessing and
changing state fields

* Private Fields — Aka State (field) variables that are
marked as private are not directly accessible by client
code (code within a program that declares the class as
an object and then uses the object).

® Abstraction - Focusing on essential properties, methods
rather than inner details.

Encapsulation example

® Encapsulating the x and y fields of the Point class:

public class Point ({

/** Fields (aka State variables) **/
private int x;
private int y;

// Will now require accessor methods so client
// may get values of x and y
public int getX() {
return x;
}

public int getY () {
return y;
}

// Also requires a mutator method for setting x and y
public void setlocation(int x, int y) ({
this.x X;
. this.y V'

Class Invariant

e Class Invariant - An assertion (or fact) about an object's state
that is true for the lifetime of the object:

® Java has no formal mechanism in the language for maintaining
assertions.

® |tis up to the programmer and the logic of the class to enforce
assertions.

® Examples from a “Time” class that has state fields that must
have restricted value ranges:

® hours - must be between O and 23, inclusive
® Minutes - must be between O and 59, inclusive

® dayOfTheWeek - must be from the list of Strings in the set:
{"Sunday", "Monday", "Tuesday", "Wednesday",
"Friday", "Saturday"}

Thursday",

Class Invariant (continued)

® Another example is the Point class in which you only
want to deal with the upper-right (positive x, positive
y) quadrant:

// Requires a mutator method for setting x and y
// that enforces the invariant
public void setLocation(int x, int y) {
if (x <0 || y < 0) {
throw new IllegalArgumentException() ;

}
this.x
this.y

Inheritance

Inheritance - A mechanism in which one object acquires all the
properties and behaviors of a parent object. Inheritance allows
there to be a base class, aka the superclass, that is extended to
make a derived class, aka the subclass.

Superclass - The parent class in an inheritance relationship.

Subclass - The child, or derived, class in an inheritance
relationship.

Syntax Notation for a class that inherits from a superclass:

public class <name> extends <superclass> ({

}

Inheritance (continued)

® Consider a program that kept track of animals in a zoo. That prosgram

could use a class for each type of animal, including Lion, Tiger,

nake, and

Turtle classes.

Further suppose that each of these classes had accessor methods to
determine it the animal of that class is warm-blooded, whether or

not it lays eggs, and whether or not it has a tail.

However, many types of animals have things in common. For
example, all reptiles are cold-blooded and lay eggs, and all
mammals are warm-blooded and do not lay eggs (is the platypus
still a thing?).

It is with this “sameness”, these “commonalities”, where inheritance
can help by introducing Reptile and Mammal superclasses.

The Turtle and Snake classes would be based on a superclass
called Reptile.

Lastly, the Mammal and Reptile classes would also be derived from
a superclass called Animal.

Inheritance (continued)

e @Override - Use of the @Override directive before any
methods in the subclass class that will override those from the
superclass. This directive must be included for the override
(aka "specialization™) to occur.

e Sample: Take a look in...

/home/grader/rogersl6l/Public/Zoo

...and in...

/home/grader/rogers161/Public/Zoo2

...for examples that show no inheritance and inheritance through
the Reptile, Mammal and Animal classes, respectively.

