
Object-Oriented
Programming (OOP)

Advanced Topics
CSCI 161 – Introduction to Programming I

Professor Thomas Rogers

Overview
� Chapter 8 in the textbook “Building Java Programs”,

by Reges & Stepp.

� Object Constructors – Advanced

� Using Objects in a Method

� Object Encapsulation

� Class Invariant

� Inheritance

Object Constructors -
Advanced

� Constructor – A method having the same name as
the Object class.

� Default Constructor – Always include the default
constructor (no params) even if just to give state
variables their initial values.

� Multiple Constructors – You can include multiple
constructors, each with different parameter sets,
each with a different purpose.

Object Constructors –
Advanced (continued)

� Multiple Constructors – A class with multiple constructors:

public class Point {

/** Fields (aka State variables) **/
int x;
int y;

/** Constructors **/
// constructs a point with a location of 0, 0
public Point() {

x = 0;
y = 0;

}

// constructs a point at a given location
public Point(int x, int y) {

this.x = x;
this.y = y;

}
}

Using Objects in a Method
� Using Objects in a Method - For example, the main method:

public static void main(String[] args) {

// Declare two points
Point p1 = new Point(); // Uses default
constructor
Point p2 = new Point(3, 2); // Uses alt constructor

System.out.printf(“p1.x=%d p1.y=%d\n”, p1.x, p1.y);
System.out.printf(“p2.x=%d p2.y=%d\n”, p2.x, p2.y);

p2 = p1; // p2 object now set to p1.
p1.x = 5;
System.out.printf(“p2.x=%d p2.y=%d\n”, p2.x, p2.y);

}

Question: What will be printed?

Object Encapsulation, etc.
� Encapsulation - Hiding the implementation details of an

object from the clients (callers) of the object:

� Make the state fields of the class private

� Provide accessor and mutator methods for accessing and
changing state fields

� Private Fields – Aka State (field) variables that are
marked as private are not directly accessible by client
code (code within a program that declares the class as
an object and then uses the object).

� Abstraction - Focusing on essential properties, methods
rather than inner details.

Encapsulation example
� Encapsulating the x and y fields of the Point class:

public class Point {

/** Fields (aka State variables) **/
private int x;
private int y;

// Will now require accessor methods so client
// may get values of x and y
public int getX() {

return x;
}

public int getY() {
return y;

}

// Also requires a mutator method for setting x and y
public void setLocation(int x, int y) {

this.x = x;
this.y = y;

}
}

Class Invariant
� Class Invariant - An assertion (or fact) about an object's state

that is true for the lifetime of the object:

� Java has no formal mechanism in the language for maintaining
assertions.

� It is up to the programmer and the logic of the class to enforce
assertions.

� Examples from a “Time” class that has state fields that must
have restricted value ranges:

� hours - must be between 0 and 23, inclusive

� Minutes - must be between 0 and 59, inclusive

� dayOfTheWeek - must be from the list of Strings in the set:
{"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday"}

Class Invariant (continued)
� Another example is the Point class in which you only

want to deal with the upper-right (positive x, positive
y) quadrant:

// Requires a mutator method for setting x and y
// that enforces the invariant
public void setLocation(int x, int y) {

if (x < 0 || y < 0) {
throw new IllegalArgumentException();

}
this.x = x;
this.y = y;

}

Inheritance
� Inheritance - A mechanism in which one object acquires all the

properties and behaviors of a parent object. Inheritance allows
there to be a base class, aka the superclass, that is extended to
make a derived class, aka the subclass.

� Superclass - The parent class in an inheritance relationship.

� Subclass - The child, or derived, class in an inheritance
relationship.

� Syntax Notation for a class that inherits from a superclass:

public class <name> extends <superclass> {
...

}

Inheritance (continued)
� Consider a program that kept track of animals in a zoo. That program

could use a class for each type of animal, including Lion, Tiger, Snake, and
Turtle classes.

� Further suppose that each of these classes had accessor methods to
determine if the animal of that class is warm-blooded, whether or
not it lays eggs, and whether or not it has a tail.

� However, many types of animals have things in common. For
example, all reptiles are cold-blooded and lay eggs, and all
mammals are warm-blooded and do not lay eggs (is the platypus
still a thing?).

� It is with this “sameness”, these “commonalities”, where inheritance
can help by introducing Reptile and Mammal superclasses.

� The Turtle and Snake classes would be based on a superclass
called Reptile.

� Lastly, the Mammal and Reptile classes would also be derived from
a superclass called Animal.

Inheritance (continued)
� @Override - Use of the @Override directive before any

methods in the subclass class that will override those from the
superclass. This directive must be included for the override
(aka "specialization") to occur.

� Sample: Take a look in…

/home/grader/rogers161/Public/Zoo

… and in…

/home/grader/rogers161/Public/Zoo2

…for examples that show no inheritance and inheritance through
the Reptile, Mammal and Animal classes, respectively.

