
Object-Oriented
Programming (OOP)

Basics
CSCI 161 – Introduction to Programming I

Professor Thomas Rogers

Overview
� Chapter 8 in the textbook “Building Java Programs”,

by Reges & Stepp.

� Review of OOP History and Terms

� Discussion of Object State and Behavior

OOP History
� Object-Oriented Programming dates back to 1967

and the Simula computer programming language

� Used for simulation programs

� Its elements for holding data were known to be called
“objects”

� Today there are many programming languages that
are object-oriented, including Java, C++, Python,…

OOP Terms
� Object-Oriented Programming – A reasoning about

a program as a set of objects rather than a set of
actions.

� “Reasoning” in this context refers to many aspect of
programming: design, construction, the view of the
overall program and its component solution, …

� Procedural Programming – Is the oldest style of
programming. Based on functions, procedures and
methods, and is what this class has been focused
on until now…

OOP Terms (continued)
� Procedural vs. OOP – verb vs noun

� Verb – Procedural or functional in nature.

� Action in nature

� Hinted by method names: displayPrompt, getNextInteger,
readFile.

� Noun – Objects are the building blocks of the program

� As such, they are things, nouns, things actually found in the
world and the space of the problem at hand.

� Object names read like nouns: file, person, reader, scanner,
etc.

OOP Terms (continued)
� Java is a class-based OOP language:

� Class-based in that objects are instances of classes

� It is through that relationship (instance of a class) that an
object gets its type

� Remember, primitive data types (PDTs) like int, double, char
are not instances of classes, thus are not objects once
declared:

� Example: int num = 5;

� However, the String class is just that, a class, so a variable
declared from the String class is an object, with methods,
and of the type String class:

� Example: String str = new String(5);

OOP Terms (continued)
� Object – A programming entity that contains state

(data) and behavior (methods).

� State – A set of values (internal data) stored in an
object.

� Behavior – A set of actions an object can perform,
often reporting or modifying its internal state.

� Client – (or “Client Code”) – Code that interacts with
the objects of a class (aka calling code, or caller).

Classes, Objects, State
� Classes, objects and state are not completely new:

� The variables within a class are what hold its data and
define its state.

� You already develop each program and include one
class, the program class, and it contains the required
main method.

� You have already worked with several classes,
including Scanner, File, String, Integer, Double…

� You can also add and define your own classes, as
separate .java files, and these act as blueprints for
useful objects within your program.

Classes, Objects, State
(continued)

� Class vs Object: A class in your program that
provides a blueprint for how objects created from
that class will act, behave, etc., since each class
defines the following about its objects:

� The state in each object, stored internally in private
variables called “fields”.

� The behavior each object can performed is defined by
the methods within the class.

� How to construct an object of that class type.

Object Behavior
� There are several; types of methods that define object

behavior, and they have names:

� Instance Method – A method inside an object that operates
on that object. Examples: String has .length(), Scanner has
.hasNext().

� Implicit Parameter – The object itself is an implicit
parameter of all Instance methods, meaning the state (data
within) is always available within instance methods.

� Mutator – An instance method that modifies the object’s
internal state.

� Accessor – An instance method that provides information
about the state of an object without modifying it.

Object Initialization:
Constructors

� Constructor – The method of the same name as the
class, and it is used to “Construct” the object from
the class:

� A class can have many constructors, all having the
same name as the class, but with different
parameters.

� A common use of a constructor is to allow the caller to
specify initializing values for state (field) variables of
the class (as in supplying X and Y for the Point class)

Constructors – With & Without

// Without a constructor
Point p1 = new Point();

p1.x = 7;
p1.y = 2;

// With a constructor
Point p1 = new Point(7, 2);

Constructors (continued)
� The default constructor is inserted by the JVM if no other

constructors are defined in your classes code.

� It is a good practice to always include a constructor, even
if it accepts no parameters and is used only to initialize
state (field) variables to specific, known values.

� Warning – Be careful NOT to include void as the return
data type of a constructor. Constructors have no return
type and including void out of habit will indicate to Java
that the method is “just another method” and not a
constructor.

� This – The keyword this refers to the object derived from
the class and is a convenient way within constructors
and methods to reference object fields.

More to come…

� More advanced OOP topics in the next lecture…

