Array Basics

CSCI 161 - Introduction to Programming |

Professor Thomas Rogers




Overview

® Chapter 7 in the textbook “Building Java Programs”, by
Reges & Stepp.

® Array Basics and Terminology

* Why Arrays?

e Auto-Initialization and Initialization with Known Values
® Accessing Specific Array Elements

® Array Traversal

® Printing an Array

“,b




Array Basics and Terminology

® Computers and computer programs are very good at holding
vast amounts of information (data). Arrays are better than
individual variables at holding large amounts of data.

® Array - An indexed structure that holds multiple values of the
same data type.

®* Index — An integer indicating the position of a particular
element in a data structure.

® Element - Each item within the array is called an element.

e Zero-Based Indexing - A numbering scheme used throughout
Java (and many other languages) in which a sequence of
values is indexed starting with O (element O, element, element

2, and so on).




Why Arrays?

® Why use arrays? Well, consider a program that must
keep track of many temperatures, maybe two, three, or
more...maybe dozens.

® Your program could just declare all the needed
temperature variables separately, like:

double temperaturel;
double temperature?2;
double temperature3;

e But there has to be a better way, especially for many
values? -




.. This is why!

® |nstead of three (or more) different variables, you can
declare one array that holds all the values your
program needs:

double[] temperatures = new double[3];

® The syntax notation for array declaration and sizing
IS as follows:

<element type>[] <name> = new <element type>[<length>];




Is that all there Is?

® Nope, there is a lot more to know, like:

What are the elements of an array automatically
Initialized to when the array is created?

How do you access individual elements of an array?

How do you traverse through an array in a loop within
your program?

How do you print out an array, easily, say for
debugging purposes?




Auto-Initialization

e Auto-Initialization — Depending on the data type of
the array, its elements are automatically given a
default, initial value when the array is created as
follows based on type:

int 0
double 0.0
char \O’

boolean false

objects null




Initializing with Known Values

® You can also size an array and initialize it with known,
specific values using the syntax that includes curly-
braces and values separated by commas, as shown in
the example below:

int[] daysIn = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

* Where the syntax notation is as follows:

<element type>[] <name> = {<value>, <value>, ..., <value>};




Accessing a Specific Element

®* Any element of an array can be accessed using an
index into the array.

® For example, to get the value associated with the
third element of the grades array and use that value
to set a new variable, myGrade, execute the
following:

int myGrade = grades|[2];

* IMPORTANT: Note that the index of the third
element is two (2). Remember, this is because of
ero-based indexing.




Array Iraversal

® |ooping through an array and processing one, more
or all of the elements is called “array traversal.”

® Arrays have a special For loop called the For-Each
loop and it's syntax notation is:

for (<type> <name> : <array>) ({

<statement>
<statement>

<statement>




Example of For-Each

® An example:

for (int x: temperatures) {
if (x > average) {
above++;
}
}

® Notes:

® The variable x is the loop variable, and it has to be declared
with the same type as the array.

® FEach time through the loop, x has the value of the next element
in the temperatures array.

® The average and above variables were defined prewously and
. Vshown for the purpose of the example.




Using a traditional For loop

®* By using an integer loop variable as an index and the .length
property of the array as an upper bounds, the traditional for
loop may be utilized:

for (int idx=0; idx < temperatures.length; idx++) {
int temp = temperatures[idx];
if (temp > average) ({
above++;

}
® Notes:

® .length is a property of an array, not a method (no parameters).

® The index of the last element is one less than the length (due to
Zero- based indexing).




Printing an Array

e Attempting to print an array directly does not work. The
following will output gibberish:

System.out.println (temperatures); // BAD

® |nstead, an array can be printed, one element at a time
using the array traversal algorithms (for-each and for) as
shown before and printing each element within the loop,

or...

® The Arrays class (note the uppercase) can be utilized
along with its .toString() method to return all the values
of an array as a formatted String ready for printing, as in
the following example:

System.out.println (Arrays. toString (temperatures)) ;




More on Arrays...

® More on arrays in future lectures...




