
Array Advanced Topics
CSCI 161 – Introduction to Programming I

Professor Thomas Rogers

Overview
� Chapter 7 in the textbook “Building Java Programs”, by

Reges & Stepp.

� Reference Semantics

� References vs Value Semantics

� Why Have Both Semantics?

� Advanced Array Techniques

� Multidimensional Arrays

Reference Semantics
� Arrays are powerful because they can be passed to methods

and their values changed within the method and those changes
visible to the caller. This is due to Reference Semantics.

� To understand Reference Semantics, we should first look at its
counterpart, Value Semantics:

� Value Semantics (Value Types) - A system in which values are
stored directly and copying is achieved by creating independent
copies of values. Types that use value semantics are called value
types.

� Primitive data types, like int, double are stored as value types
and passed to methods via value semantics.

� Objects, such as those variables declared from classes (String,
Scanner, File, ...) and arrays are stored as reference types.

Reference vs Value Semantics
� A primitive data type variable such as int x looks like

the following in memory:

int x = 8;

� However, an array of integers named list is
represented in memory as follows:

int[] list = new int[5];* Note:

list points to
the memory
holding the
array

Why Have Both Semantics?
� Why Reference Types? - Objects can be complex and

they can hold a lot of data. For this reason, the ability
to pass them around and sharing them in your
program as a reference increases efficiency (uses
less memory, and less resources such as heap and
the stack, etc.).

� Why Value (aka Primitive) Types? - Again, for
efficiency. For certain types of data (integers,
boolean, etc.) that are small and without complexity,
the overhead of references just adds bloat and
decreases efficiency.

Example
� Consider the following sample code:

int[] list1 = new int[5];
int[] list2 = new int[5];
for (int i = 0; i < list1.length; i++) {

list1[i] = 2 * i + 1;
list2[i] = 2 * i + 1;

}
int[] list3 = list2;
list3[0] = 0;

* Note:

list3 and list2 point
to the same memory
locations

Be Aware, Be Careful…
� Things to be aware of:

� Passing arrays to a method - When you pass an array to a
method it is passed by reference and you are able to
change the contents of the array.

� .equals() method - Just like the same named method of the
String object, this method can tell whether two array objects
are the same (two different objects, but each object is an
array with the same number of elements and each
respective element identical.)

� null - Java keyword signifying no object. Arrays of objects
(like String[] are auto-initialized to null when the array is
declared with no initial values.

Advanced Array Techniques
� Shifting Values in an Array - A complex subject, but

boils down to rotateLeft() and rotateRight methods:

� rotateLeft - method for integer arrays:

public static void rotateLeft(int[] list) {
int first = list[0];

for (int i = 0; i < list.length -1; i++) {
list[i] = list[i + 1];

}

list[list.length - 1] = first;

}

Advanced Array Techniques
� rotateRight - method for integer arrays:

public static void rotateRight(int[] list) {
int last = list[list.length - 1];

for (int i = list.length-1; i >= 1; i--) {
list[i] = list[i - 1];

}

list[0] = last;

}

Advanced Array Techniques
� Arrays of Objects: Your program can declare and use

arrays of primitive data types, or of objects (String, your
own object, etc.).

� Determine Size, Declare, Fill: It is important to
remember that declaring and filling arrays is often a
multi-step process:

1. Determine the needed size of the array (possibly by
reading the number entries or lines in a file).

2. Declare the array given its size.

3. Fill the array by looping through the data and creating
and/or assigning new objects/values to the array elements.

Multidimensional Arrays
� Multidimensional Array - An array of arrays with the elements

of which accessed through multiple integer indexes (one per
dimension).

� All dimensions must be arrays of the same data type and all
dimensions have arrays that are zero-based.

� Two-Dimensional Array: Think of a spreadsheet with rows
and columns (first index rows, second index columns):

// 3 rows by 5 columns
double[][] temps = new double[3][5];

Multidimensional Arrays
� Three-Dimensional Array: It is a bit harder to

visualize a three-dimension array, but a bit easier if
you think of multiple sheets, with each sheet on a
different "plane", with the general recommendation
to think of the first dimension as the plane #,
followed by row, followed by column:

int[][][] numbers =
new int[numPlanes][numRows][numColumns];

Jagged Arrays
� Two-dimensional Arrays need not be rectangular

(same width for each row). They can be jagged,
instead:

int[][] jagged = new int[3][];
jagged[0] = new int[2];
jagged[1] = new int[4];
jagged[3] = new int[3];

