
Array Basics
CSCI 161 – Introduction to Programming I

Professor Thomas Rogers

Overview
� Chapter 7 in the textbook “Building Java Programs”, by

Reges & Stepp.

� Array Basics and Terminology

� Why Arrays?

� Auto-Initialization and Initialization with Known Values

� Accessing Specific Array Elements

� Array Traversal

� Printing an Array

Array Basics and Terminology
� Computers and computer programs are very good at holding

vast amounts of information (data). Arrays are better than
individual variables at holding large amounts of data.

� Array - An indexed structure that holds multiple values of the
same data type.

� Index – An integer indicating the position of a particular
element in a data structure.

� Element – Each item within the array is called an element.

� Zero-Based Indexing - A numbering scheme used throughout
Java (and many other languages) in which a sequence of
values is indexed starting with 0 (element 0, element , element
2, and so on).

Why Arrays?
� Why use arrays? Well, consider a program that must

keep track of many temperatures, maybe two, three, or
more…maybe dozens.

� Your program could just declare all the needed
temperature variables separately, like:

double temperature1;
double temperature2;
double temperature3;
. . .

� But there has to be a better way, especially for many
values?

… This is why!
� Instead of three (or more) different variables, you can

declare one array that holds all the values your
program needs:

double[] temperatures = new double[3];

� The syntax notation for array declaration and sizing
is as follows:

<element type>[] <name> = new <element type>[<length>];

Is that all there is?
� Nope, there is a lot more to know, like:

� What are the elements of an array automatically
initialized to when the array is created?

� How do you access individual elements of an array?

� How do you traverse through an array in a loop within
your program?

� How do you print out an array, easily, say for
debugging purposes?

Auto-Initialization
� Auto-Initialization – Depending on the data type of

the array, its elements are automatically given a
default, initial value when the array is created as
follows based on type:

Type Value

int 0

double 0.0

char ‘\0’

boolean false

objects null

Initializing with Known Values
� You can also size an array and initialize it with known,

specific values using the syntax that includes curly-
braces and values separated by commas, as shown in
the example below:

int[] daysIn = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

� Where the syntax notation is as follows:

<element type>[] <name> = {<value>, <value>, ..., <value>};

Accessing a Specific Element
� Any element of an array can be accessed using an

index into the array.

� For example, to get the value associated with the
third element of the grades array and use that value
to set a new variable, myGrade, execute the
following:

int myGrade = grades[2];

� IMPORTANT: Note that the index of the third
element is two (2). Remember, this is because of
zero-based indexing.

Array Traversal
� Looping through an array and processing one, more

or all of the elements is called “array traversal.”

� Arrays have a special For loop called the For-Each
loop and it’s syntax notation is:

for (<type> <name> : <array>) {
<statement>
<statement>
<statement>
...

}

Example of For-Each
� An example:

for (int x: temperatures) {
if (x > average) {

above++;
}

}

� Notes:

� The variable x is the loop variable, and it has to be declared
with the same type as the array.

� Each time through the loop, x has the value of the next element
in the temperatures array.

� The average and above variables were defined previously and
shown for the purpose of the example.

Using a traditional For loop
� By using an integer loop variable as an index and the .length

property of the array as an upper bounds, the traditional for
loop may be utilized:

for (int idx=0; idx < temperatures.length; idx++) {
int temp = temperatures[idx];
if (temp > average) {

above++;
}

}

� Notes:

� .length is a property of an array, not a method (no parameters).

� The index of the last element is one less than the length (due to
zero-based indexing).

Printing an Array
� Attempting to print an array directly does not work. The

following will output gibberish:

System.out.println(temperatures); // BAD

� Instead, an array can be printed, one element at a time
using the array traversal algorithms (for-each and for) as
shown before and printing each element within the loop,
or…

� The Arrays class (note the uppercase) can be utilized
along with its .toString() method to return all the values
of an array as a formatted String ready for printing, as in
the following example:

System.out.println(Arrays.toString(temperatures));

More on Arrays…
� More on arrays in future lectures…

