Chapter 1

Finite Automata

A finite automaton is the first type of representation for a regular language that we will examine.

In this chapter we will construct a deterministic finite automaton (DFA) in JFLAP, illustrate several methods of simulating input on that automaton, discuss nondeterministic finite automata (NFAs) in JFLAP, and present simple analyses that JFLAP may apply to automata. We present a standard definition of a DFA in Sections 1.1–1.4, and show in the optional Section 1.5 how JFLAP handles a more general definition of a DFA with multiple character transitions.

1.1 A Simple Finite Automaton

![Diagram of a finite automaton (FA) with states q0, q1, and q2 and transitions labeled a and b.]

Figure 1.1: A finite automaton (FA), which recognizes the language of any number of a’s followed by any odd number of b’s.

In this section you will learn how to build automata in JFLAP by way of constructing, with help, the DFA that recognizes the language of strings of any number of a’s followed by any odd number of b’s (e.g., ab, bbb, aabbbb). This section will teach the essentials of automaton editing in JFLAP: creating and deleting states and transitions, moving existing states, editing existing transitions, and setting states to be initial and final. When you are done, you will have a machine like that pictured in Figure 1.1!

The first step is, of course, to start JFLAP. Once JFLAP is running, you begin building an FA by clicking on the button labeled Finite Automaton. A window will appear with (from top to bottom) a menu, a tab that says Editor, a tool bar, and a large blank area at the bottom.
1.1.1 Create States

All automata require a set of states. Before you can create states you must first activate the State Creator tool: click on the \circ button below the window’s menu bar. This button will now appear shaded to indicate that tool is active.

The large blank area below the tools, called the canvas, is where the automaton is created and edited. Now that the State Creator tool is active, click on the canvas to create a state. A state will appear under the location where you clicked. As you will see, states in JFLAP are yellow circles with some identifying text inside. Click three more times in three other locations to create three more states. There will now be four states on the canvas, with the text q_0, q_1, q_2, and q_3 to identify each of them.

1.1.2 Define the Initial State and the Final State

All automata require an initial state and a set of final states. In this automaton we will make q_0 the initial state, and q_1 the single final state. Select the Attribute Editor tool, by clicking the \checkmark button. Two of this tool’s many functions are to define an initial state and to define the set of final states. (This tool’s other functions are described in Section 1.1.5.)

Now that the Attribute Editor tool is selected, right-click on q_0 (or, control-click if you are a Macintosh user with a single mouse button). A pop-up menu above the state will appear with several items, including two items Final and Initial. Select the item Initial. The state q_0 will now have a white arrowhead appear to its left to indicate it is the initial state. Similarly, right-click on the state q_1, and select the item Final. The state q_1 will now have a double outline instead of a single outline, indicating that this state is a member of the set of final states.

You may find it necessary to set a final state as nonfinal. To illustrate how, right-click on q_1 once you have marked it as final. Notice that the item Final now has a check mark next to it. Select the item Final again. This will toggle q_1 out of the set of final states. Before you proceed, you must of course put q_1 in the set of final states again!

1.1.3 Creating Transitions

We will now create transitions. In this machine, three transitions are necessary: three on b from q_0 to q_1, q_1 to q_2, and back again from q_2 to q_1, and a loop transition on a for state q_0. We will create others for illustrating some special features, and for later illustration of the Deleter tool.

To create these transitions, select the Transition Creator tool, denoted by the \rightarrow icon. The first transition we are going to create is the b transition from q_0 to q_1. Once the Transition Creator tool is selected, press the mouse cursor down on the q_0 state, drag the mouse cursor to the q_1 state, and release the mouse button. A text field will appear between the two states. Type "b" and
1.1. A SIMPLE FINITE AUTOMATON

press return. A new b transition from q₀ to q₁ will appear. By the same method, create the two b transitions from q₁ and q₂ and from q₂ and q₁.

Tip As an alternative to pressing return, you can stop editing a transition merely by doing something else like clicking in empty space (but not on a state!), or creating another transition by dragging between two other states. If you wish to cancel an edit of a transition, press Escape.

The next transition is q₀’s loop transition on a. Creating loop transitions on a state is just like other transitions: you press the mouse on the start state and release the mouse on the end state. However, because the start and end states are the same for a loop transition, this is the same as clicking on the state. So, click on state q₀, and enter “a” and press return, just as you did for the b transitions.

Lastly, create three transitions from q₀ to q₃, the first on the terminal a, another on b, and a third on c. Notice that JFLAP stacks the transition labels atop each other.

Tip If you are in the process of editing a transition from a state qᵢ to a state qⱼ and you wish to create another transition from state qᵢ to state qⱼ without having to use the mouse, press Shift-Return. This creates a new transition from qᵢ to qⱼ in addition to ending your editing of the current transition.

1.1.4 Deleting States and Transitions

You probably noticed that the automaton built requires three states, not four. This fourth state q₃ and the transitions going to it are unnecessary and can be removed. Deleting objects has a tool all its own: click the X button to activate the Deleter tool.

First, we want to remove the transition on b from q₀ to q₃. To delete this transition, click on the b. The b transition will be gone, leaving the a and c transitions. You can also click on the transition arrow itself to delete a transition: click on the arrow from q₃ to q₀, and notice that the a transition disappears. The c transition remains. When you click on the arrow, the transition with the label closest to the arrow is deleted.

Deleting states is similar. Click on the state q₃. The state q₃ will disappear, and notice that the c transition is gone as well. Deleting a state will also delete all transitions coming from or going to that state. You should now be left only with the other three states and the transitions between them.

1.1.5 Attribute Editor Tool

We already used the Attribute Editor tool in Section 1.1.2, but it has many other functions related to modification of attributes of existing states and transitions. Select the Attribute Editor tool once again as we walk through examples of its use.
Setting states as initial or final

This tool may set states as initial or final states as described in Section 1.1.2.

Moving states and transitions

When you initially placed the states for the FA built earlier you may not have arranged them in a logical order. To move a state, press on the state and drag it to a new location. Dragging a transition will likewise move its two associated states. Attempt this now by dragging states and transitions.

Editing existing transitions

To edit an existing transition, simply click on it! Try clicking the transition from \(q_0 \) to \(q_1 \). The same interface in which you initially defined this transition will appear on the transition and allow you to edit the input characters read by that transition.

Labels

When you set the state \(q_0 \) as the initial state and the state \(q_1 \) as a final state, perhaps you noticed the menu item Change Label. Right-click on \(q_2 \) and select Change Label. A dialog box will appear, asking for a label. When processing input, while the machine is in state \(q_2 \), we shall have processed an even number of b's, so enter “even \# of b's”. A box will appear under the state with this label. By a similar token, label \(q_1 \) “odd \# of b's”. To delete an existing label from a state choose the menu item Clear Label from the same menu. Alternatively, the menu item Clear All Labels will delete all labels from all states.

If you right-click in empty space, a different menu will appear, with the item Display State Labels. This will initially have a check mark next to it to indicate that it is active. Select it. The labels will become invisible. Hover the mouse cursor over \(q_2 \); after a short time, a tool-tip will appear to display the label even \# of b's. Right-click in empty space once more, and reactivate Display State Labels; the labels will appear again.

Automatic layout

Right-click in empty space again. Notice the menu item Layout Graph. When selected, JFLAP will apply a graph layout algorithm to the automaton. While usually not useful for automata you produce yourself, many of JFLAP’s algorithms automatically produce automata, often with large numbers of states. If you find JFLAP’s first attempt at automatic layout inappropriate, this may alleviate the tedium of moving those states yourself.
1.2. Simulation of Input

In this section we cover three of JFLAP's methods to simulate input on an automaton: stepping with closure, fast simulation, and multiple simulation. The fourth, stepping by state, is discussed briefly in Section 1.3.

1.2.1 Stepping Simulation

The stepping simulation option allows you to view every configuration generated by an automaton in its attempt to process an input string. Figure 1.2 shows a snapshot of a stepping simulation of the input string $aabb$ on the automaton you built in Section 1.1, also stored in file ex1.1a. The top portion of the window displays the automaton, with the state in the active configuration shaded darker. The portion below the automaton displays the current configuration. In Figure 1.2, notice the configuration is in state q_0, and that the first two characters aa are grayed-out, indicating that they have been read, while the three characters bbb are not grayed-out, indicating that they remain to be read.

Figure 1.2: In the midst of the simulation of $aabb$ on our FA.

Tip In addition to activating a tool by clicking on its button in the toolbar, there are also shortcut keys available for quickly switching tools. For example, hover the mouse over the State Creator tool \odot; after a little while a tool-tip will appear with the text (S)tate Creator. The parentheses enclosing the S indicate that this is the shortcut key for the State Creator tool. Note that in spite of appearances, shortcut keys are really lower case, so do not press Shift when typing the shortcut key for a tool!
Try stepping

We shall walk through the process of stepping through input in an automaton. First, select the menu item Input : Step with Closure. A dialog box will ask for input for the machine: enter "aabb" and press Return or click OK.

Your window will now appear similar to Figure 1.2. The single configuration displayed will be on the initial state q_0, and have the unprocessed input $aabb$.

The tool bar at the bottom is your interface to the simulator. Click Step. The old configuration on q_0 has been replaced with a new configuration, again on the state q_0, but with the character a read. Notice that the first character a in the input has been lightened a bit to indicate that it has been read. Click Step twice more, and it will go from q_0 to q_0 again, and then to q_1, with the input bb remaining.

Some of the operations in the tool bar below the configuration display act only on selected configurations. Click on the configuration; this will select it (or deselect it if it is already selected). A selected configuration is drawn shaded. Click Remove. Unfortunately, this deletes the only configuration! The simulator is useless. Oops! Click the Reset button; this will restart the simulation, so you can try again.

With the simulation back to its original state, click Step repeatedly (five times) until all the input is read. The configuration at this point should be drawn with a green background, indicating that it is an accepting configuration, and that the machine accepts the input. FA configurations are accepting configurations if all the input is read and it is in a final state. The configuration's input is entirely gray, indicating that all the input has been read.

One can Trace a configuration to see its ancestry from the initial configuration. (Do not select a configuration; press Trace instead. An error message indicates that Trace requires a selected configuration!) Now select the single configuration, and click the Trace button. A window will show the ancestry of this configuration, starting with the initial configuration on top and the selected configuration on the bottom. When you've had a chance to look over the trace of the configuration, close this window.

To return to the editor, choose File : Dismiss Tab to dismiss the simulator.

Failure

On the flip side of an accepting configuration is a rejected configuration. A rejected configuration is one which (1) does not lead to any more configurations and (2) is not accepting. Run a stepping simulation again, except this time with the input $aabb$. Since this has an even number of b's the machine will not accept it. Click Step repeatedly, and note that eventually the configuration will turn red. This indicates that it is a rejected configuration.
1.2. SIMULATION OF INPUT

Figure 1.3: The result of performing a fast simulation of aabbb on the automaton.

1.2.2 Fast Simulation

Stepping through simulation of input is fine, but Fast Run will reveal if the automaton accepts a string and, if it does, the series of configurations leading to that string’s acceptance without the bother of having to repeatedly step through the machine watching for accepting configurations.

Choose Input: Fast Run. When prompted for input, enter the same “aabbb” string. The result after JFLAP determines that the machine accepts this input is shown in Figure 1.3. The trace of configurations, from top to bottom (i.e., from initial to accepting configuration), is displayed. Alternatively, if the machine did not accept this input, JFLAP would report that the string was not accepted.

Notice the two buttons near the bottom of the dialog box. I’m Done will close the display. Keep Looking is useful for nondeterministic machines and is covered later in Section 1.3.2.

1.2.3 Multiple Simulation

The third method for simulating input on an automaton is Multiple Run. This method allows one to perform multiple runs on a machine quickly. Select Input: Multiple Run now. (Your display will not resemble Figure 1.4 exactly, but do not worry!) The automaton is displayed to the left, and on the right is an empty table where you may enter inputs for multiple runs. One enters inputs in the Input column. Select the upper-left cell of this table, enter the input “aabbb”, then
press return. Notice that instead of one row there are now two: the table will grow to accommodate more entries as you enter them.

Continue entering various inputs you wish to test on the machine; whichever you choose is up to you. If you wish to make a lambda entry—that is, test to see if the automaton accepts the empty string—then while entering an input, click the Enter Lambda button near the bottom of the window, and that input field will hold the empty string. When you have entered all inputs and wish JFLAP to simulate all these strings, click Run Inputs. Notice that the Result column is now full of Accept and Reject entries, indicating whether an input was accepted or not. View Trace will show the trace of the last configuration generated for each selected run in the table. Clear will clear the table of all inputs.

Tip For convenience, the multiple run simulator will remember all inputs entered by the user between machines. For example, suppose you have one automaton, and perform multiple runs on that machine. If you later perform multiple run simulation on a different automaton those same inputs will appear.

1.3 Nondeterminism

In this section we will talk about NFAs in JFLAP, using the automaton pictured in Figure 1.5 as our example.

Either of two conditions imply that an FA is nondeterministic. The first condition is, if the FA has two transitions from the same state that read the same symbol, the FA is considered an NFA.
1.3. NONDETERMINISM

Figure 1.5: An NFA that accepts the language of a series of a's followed by a series of b's, where the number of a's is nonzero and divisible by 2 or 3, and the number of b's is divisible by 2 or 3.

For example, q_1 of the FA in Figure 1.5 has two outgoing transitions on a. The second condition is: if the FA has any transitions that read the empty string for input, the FA is nondeterministic.

1.3.1 Creating Nondeterministic Finite Automata

Creating an NFA is much the same as creating a DFA. Select File: New, and then select Finite Automaton to get a new window. In this window we will create the automaton shown in Figure 1.5, that accepts the language $a^n b^m$, where $n > 0$ and is divisible by 2 or 3 and $m \geq 0$ and is divisible by 2 or 3. The first step is to create the thirteen states of the automaton, and to make q_0 the initial state and make q_6 and q_{11} the final states.

Note that JFLAP numbers states in the order that you create them: the first state is q_0, the second q_1, and so on. It is important to respect this order: the following discussion assumes that you create the states in such an order that they are numbered as they are in Figure 1.5.

Notice the four transitions in Figure 1.5 with a λ (the Greek letter lambda). These λ-transitions are transitions on the empty string. To enter a λ-transition, create a transition, but leave the field empty. When you finish editing, a transition with the label λ will appear. Create the four λ-transitions from q_3 and q_9 to q_6 and q_{11}.

Once you have created the λ-transitions, create the other transitions on the symbols a or b.
1.3.2 Simulation

During simulation, input on a deterministic machine will produce a single path of configurations, while input on a nondeterministic machine may produce multiple paths of configurations. JFLAP's simulators have features to deal with this possibility.

Stepping simulation: Step with Closure

Select the menu item Input : Step with Closure and input the string “aaaabb”, that is, four a's followed by two b's. This is a string that will eventually be accepted since the number of a’s is nonzero and divisible by 2 and the number of b’s is divisible by 2. After you enter this input, you should see the familiar step simulator, with a starting configuration on q₀ with all the input remaining to be processed. Click Step once to move this configuration to q₁. However, if you click Step a second time you will see a rather unfamilir sight, as shown in Figure 1.6.

Notice that there are four configurations in your simulator. This is because your machine is nondeterministic: The last configuration was on q₁ with the unread input aaabb, and q₁ has a transitions to q₂ and q₉. However, what two configurations on q₀ and q₁1? These configurations are due to the λ-transitions. When a configuration proceeds to a state qᵢ, Step with Closure creates configurations not only for qᵢ, but for all states reachable on λ-transitions from qᵢ. The set...
1.3. NONDETERMINISM

of states reachable from q_i on λ-transitions is called the closure of q_i. So, when the configuration in q_9 with the remaining input $aabb$ was created, configurations for q_6 and q_{11} were created as well because the closure of q_9 includes q_6 and q_{11}.

As you may have figured out, of these two paths of configurations, the only one that will eventually lead to an accepting configuration is the configuration on q_9. Click on this configuration to select it. With the configuration selected, click Freeze. The configuration will appear tinted light ice blue! Now try stepping again: While the other configurations move on (and are rejected), that configuration will not progress! Frozen configurations do not progress when the simulator steps. With that configuration still selected, click Thaw. Thaw “unfreezes” selected configurations. Click the Step button once more, and the now unfrozen configuration will continue, and one of its nondeterministic paths will be accepted.

Select the accepting configuration and click Trace to view the series of configurations that led to the accepting configuration. Notice that there is a configuration from q_{10} directly to q_{11}, even though there is no transition from q_{10} to q_{11}. In stepping by closure one does not explicitly traverse λ-transitions in the same sense that one traverses regular transitions: Instead, no configuration was ever generated for q_9, and the simulator implicitly traversed the λ-transition.

When you have finished, dismiss the simulator tab.

Stepping simulation: Step by State

Select the menu item Input: Step by State, and input the string “aaabb”. In stepping by state, the closure is not taken, so the simulator explicitly traverses λ-transitions. If you step twice, you will have configurations in q_2 and q_9, but not the configurations in q_6 and q_{11} that we saw when stepping by closure.

Notice that the unread input on the q_9 configuration is $aabb$. If you step again, the configuration on q_9 will split into three configurations, two of which are on q_6 and q_{11}. The λ-transition was taken explicitly over a step action. If you continue stepping until an accepting configuration is encountered and run a trace, the configuration after q_{10} is on q_9, which then proceeds to q_{11} after explicitly taking the λ-transition.

Though stepping by state is in some ways less confusing, stepping with closure is often preferred because it guarantees that each step will read an input symbol.

Fast simulation

The fast simulator has some additional features specifically for nondeterminism. Select Input: Fast Run, and enter the string “aaaaaab”. Once you enter this, JFLAP will display one trace of accepting configurations.
The button **Keep Looking** is useful for nondeterministic machines, where multiple branches of configurations may accept the same input. Note that there are six a's. Since six is divisible by both two and three, there will be two paths of configurations that accept this input: one path leads through state q_3 (which verifies that the number of a's is divisible by three), and another path leads through state q_9 (which verifies that the number of a's is divisible by two). The trace through either q_3 or q_9 should be visible now. Click **Keep Looking**, and it will search for and display the trace through the other state. Click **Keep Looking** again. JFLAP will display a message, **2 configurations accepted, and all other possibilities are exhausted**, which indicates that no other accepting configurations are possible.

Multiple simulation

Nondeterministic machines may produce multiple configuration paths per run. However, the multiple run simulator's ability to view traces of selected runs will present only a single trace for each run. Specifically, this feature displays only the trace of the last configuration generated for a run. This means that for an accepting run JFLAP displays the trace of the first accepting configuration encountered, and further for a rejecting run displays the trace of the last configuration rejected, which may not provide enough information. Viewing a run in the stepwise simulator can give a more complete picture if you want to debug a nondeterministic machine.

1.4 Simple Analysis Operators

In addition to the simulation of input, JFLAP offers a few simple operators from the **Test** menu to determine various properties of the automaton.

1.4.1 Compare Equivalence

This operator compares two finite automata to see if they accept the same language. To illustrate how this works, we shall load an automaton that recognizes the same language as the automaton we have abused throughout much of this chapter: the automaton shown in Figure 1.7, stored in file `ex1.4a`. Open this file. Also, open the file `ex1.1a`; this contains the automaton of Figure 1.1.
1.5. **ALTERNATIVE MULTIPLE CHARACTER TRANSITIONS**

You will now have two windows, one with the original automaton of Figure 1.1 (presumably titled \texttt{ex1.1a}), the other with the automaton of Figure 1.7 (presumably titled \texttt{ex1.4a}). Choose the menu item \texttt{Test : Compare Equivalence} from the \texttt{ex1.4a} window. A prompt will appear where you may choose from the names of one other automaton (i.e., the title of another automaton's window) from a list. After you select the original automaton's window's name (again, presumably \texttt{ex1.1a}), click \texttt{OK}. You will then receive a dialog box telling you that they are equivalent! Dismiss this dialog. Edit the Figure 1.7 automaton so that the \textit{b} transition from \(q_0 \) to \(q_1 \) is instead an \textit{a} transition (so that the automaton now recognizes strings with any nonzero number of \textit{a}'s and an even number of \textit{b}'s), or make whatever other change is to your liking so that the automaton no longer recognizes the same language as the original. Repeat the test for equivalence, and this time you will receive a notice that it does not accept the same language.

Close the two files, but do not save the changes from the modified \texttt{ex1.4a}.

1.4.2 **Highlight Nondeterminism**

This operator will show the user which states in an automaton are nondeterministic states. Consider again the automaton in Figure 1.5, stored in the file \texttt{ex1.3a}. Load this file. The state \(q_1 \) is obviously nondeterministic, and JFLAP considers all states with outgoing \(\lambda \)-transitions to be nondeterministic states, so \(q_2 \) and \(q_3 \) are nondeterministic. Select \texttt{Test : Highlight Nondeterminism}: a new view will display the automaton with these states highlighted.

1.4.3 **Highlight \(\lambda \)-Transitions**

This operator will highlight all \(\lambda \)-transitions. Here we use the same automaton we built in Section 1.3.1, the automaton shown in Figure 1.5 and stored in the file \texttt{ex1.3a}. Load this file if it is not already present. When you select \texttt{Test : Highlight \(\lambda \)-Transitions}, a new view will display the automaton with the four \(\lambda \)-transitions highlighted.

1.5 **Alternative Multiple Character Transitions**

JFLAP provides a more general definition of an FA, allowing multiple characters on a transition. This can result in simpler FAs. Pictured in Figure 1.8 is a five-state NFA that accepts the same language as the thirteen-state NFA in Figure 1.5. Notice that the six transitions that are not \(\lambda \)-transitions are on multiple symbols, for example, \textit{aaa} from \(q_0 \) to \(q_1 \). A configuration may proceed on an \(n \) character transition of \(s_1s_2\ldots s_n \) if the next unread input symbols are \(s_1, s_2 \), and so on through \(s_n \).

We will now run a simulation on this NFA. Load the file \texttt{ex1.5a}, select \texttt{Step With Closure}, and enter the same \textit{aaaabb} string we used in Section 1.3.2. After you enter the input, you will see
the familiar step simulator, with a starting configuration on q_0 with all the input remaining to be processed. Click Step once and you will see six configurations! There are two configurations for q_3, one closure from q_1 and one closure from q_2. Note that these two configurations have different amounts of remaining input since the transitions to q_1 and q_2 process a different amount of input. Similarly, there are two configurations for q_4. Stepping twice more results in acceptance in q_3.

By allowing multiple character transitions, the first condition for FA nondeterminism in Section 1.3 changes. The first condition is now the following: if the FA has two transitions from the same state that read strings A and B, where A is a prefix of B, the FA is considered an NFA. For example, note that q_0 is a nondeterministic state: it has two transitions, one from aaa and the other from aa; aa is a prefix of aaa, so the FA is nondeterministic. The NFA would use both of these transitions while simulating the string $aaaabb$.

1.6 Definition of FA in JFLAP

JFLAP defines a finite automaton M as the quintuple $M = (Q, \Sigma, \delta, q_s, F)$ where

- Q is a finite set of states \(\{q_i| i \text{ is a nonnegative integer}\}\)
- Σ is the finite input alphabet
- δ is the transition function, $\delta : D \rightarrow 2^Q$ where D is a finite subset of $Q \times \Sigma^*$
- $q_s \in Q$ is the initial state
- $F \subseteq Q$ is the set of final states

Users reading only Sections 1.1–1.4 will want to use a simpler definition of δ. In that case, for a DFA δ is the transition function $\delta : Q \times \Sigma \rightarrow Q$, and for an NFA δ is the transition function $\delta : Q \times (\Sigma \cup \{\lambda\}) \rightarrow 2^Q$.

For those users reading Section 1.5, note that JFLAP allows for multiple characters on a transition. These multiple character transitions complicate the definition of the transition function's domain: the set $Q \times \Sigma^*$ is of infinite cardinality, though the transition function requires a finite domain. Σ^* means a string of 0 or more symbols from the input alphabet.
1.7 Summary

In Section 1.1 you learned how to create a deterministic finite automaton (DFA) in JFLAP. The editor for an automaton has a tool bar along the top portion of the window, and the automaton display on the bottom portion of the window. You create states with the tool, create transitions with the tool, delete states and transitions with the tool, and edit attributes (position, labels, setting final and initial) of existing states and transitions with the tool.

In Section 1.2 you learned how to simulate input on automata. Each simulator accepts an input string and determines if the automaton accepts that input. The step simulator is useful if you are interested in seeing every configuration generated by a machine as it attempts to read your input. The fast simulator is useful if you are interested only in those configurations that led to an accepting configuration. The multiple input simulator is useful if you are interested in running many inputs on an automaton quickly.

In Section 1.3 you learned about creating and simulating input on a nondeterministic finite automaton (NFA). Leaving the field blank when creating a transition will produce a \(\lambda \)-transition. While simulating input, the step simulator may display multiple configurations at once as the machine follows different paths attempting to read the input. The fast simulator can search for multiple branches of nondeterminism accepting the same input.

In Section 1.4 we presented three analysis operators available from the Test menu. Compare Equivalence checks if two finite automata accept the same language. Highlight Nondeterminism highlights nondeterministic states, and Highlight \(\lambda \)-Transitions highlights \(\lambda \)-transitions.

In Section 1.5 we presented an alternative definition of an FA that allows for multiple characters on a transition. This can lead to an FA with a smaller number of states.

In Section 1.6 we presented JFLAP’s formal definition of a finite automaton, which corresponds to Section 1.5. We also presented a simpler definition corresponding to Sections 1.1–1.4.

1.8 Exercises

1. Build FAs with JFLAP that accept the following languages:

(a) The language over \(\Sigma = \{a\} \) of any odd number of \(a \)'s.

(b) The language over \(\Sigma = \{a\} \) of any even number of \(a \)'s.

(c) The language over \(\Sigma = \{a,b\} \) of any even number of \(a \)'s and any odd number of \(b \)'s.

(d) The language over \(\Sigma = \{a,b\} \) of any even number of \(a \)'s and at least three \(b \)'s.
(e) The language over $\Sigma = \{a, b\}$ where the number of a’s and b’s are both either even or odd.

2. We present here a series of FAs where the author of each FA has made an incorrect claim about the language it recognizes. For each FA, we list the file name where the FA is stored and the claimed language it recognizes. For each FA you must: (i) Produce six strings that are either in the indicated language but are not accepted by the FA, or that are accepted by the FA and are not in the language; simulate these strings on the FAs as well. (ii) Modify the FA so that it actually recognizes the language we claim it does. (iii) Simulate those six strings again to show that they are now either accepted or rejected if they either are or are not in the language respectively. It helps to use the fast simulator so that your test strings are saved from (i) to (iii).

(a) The FA in ex1.6a recognizes the language of any string over the alphabet $\Sigma = \{a, b\}$ with exactly two b’s.

(b) The FA in ex1.6b recognizes the language of any string of a’s of some length divisible by 2 or 3.

(c) The FA in ex1.6c recognizes the language of any string over the alphabet $\Sigma = \{a, b, c\}$ with at least three b’s or at least three c’s.

(d) The FA in ex1.6d recognizes the language of any string over the alphabet $\Sigma = \{a, b, c\}$ with at least two b’s or at least three c’s.

3. We present here a series of FAs. We then describe the language we want the FA to recognize. You must describe the changes necessary to make the FA recognize the desired language. Edit the FA to make these modifications in JFLAP, and run several simulations of strings in (and out) of the language to determine if they are accepted or rejected.

(a) The FA in ex1.6e accepts the language of any odd number of a’s. We want the language of any even number of a’s.

(b) The FA in ex1.1a accepts the language of any number of a’s followed by any odd number of b’s. We want the language of any nonzero number of a’s followed by any odd number of b’s.

(c) The FA in ex1.6f accepts the language over $\Sigma = \{a, b, c\}$ of a followed by any odd number of b’s followed by c, repeated any number of times. We now want instead the FA where instead of one c, there can be any even number of c’s.

(d) Now, we want the DFA that accepts the language of Exercise 3c!
4. Consider the five regular language definitions given below under the alphabet $\Sigma = \{a, b\}$:

(a) Where aa is not a substring.
(b) Where aa and aaa are not substrings.
(c) Where aa and aba are not substrings.
(d) Where aa and $abaa$ are not substrings.
(e) Where aaa and aab are not substrings.

Separate these five languages into groups that you believe all accept the same language. Build the five automata that recognize these languages, and use JFLAP to confirm your suspicion that they are or are not the same language.

5. Consider the five regular language definitions given below under the alphabet $\Sigma = \{a\}$:

(a) $\{a^\ell | \ell \equiv 0 \pmod{6}, \ell \neq 0 \pmod{4}\}$
(b) $\{a^\ell | \ell \equiv 0 \pmod{3}, \ell \neq 0 \pmod{2}\}$
(c) $\{a^\ell | \ell \equiv 0 \pmod{2}, \ell \equiv 0 \pmod{3}, \ell \neq 0 \pmod{4}\}$
(d) $\{a^\ell a^\ell | \ell \equiv 0 \pmod{3}, \ell \neq 0 \pmod{2}\}$
(e) $\{a^\ell | \ell \equiv 0 \pmod{3}, \ell \neq 0 \pmod{6}\}$

Separate these five languages into groups that you believe all accept the same language. Build the five automata that recognize these languages, and use JFLAP to confirm your suspicion that they are or are not the same language.

6. Consider the set of 17 strings

$$S = \{bid, pad, hin, bat, pin, pit, hid, han, pid, pan, hat, ban, bad, bit, pat, hit, had\}$$

If S had one more string, you could build a DFA with only eight transitions that recognizes the language S. What is this string?

7. (a) Suppose we have $\Sigma = \{0, 1\}$ as our input alphabet and we want to accept the language of strings $a_0b_0c_0a_1b_1c_1 \ldots a_n b_n c_n$ such that the binary sum $a_n \ldots a_1 a_0 + b_n \ldots b_1 b_0$ is correct, carries and all. Is the language regular? If not, why not? If it is, build a DFA that recognizes the language in JFLAP.
(b) Repeat part (a), but with the language of strings \(a_n b_n c_n \ldots a_1 b_1 c_1 a_0 b_0 c_0.\)

(c) Repeat part (a), but with the language of strings \(a_0 \ldots a_n b_0 \ldots b_n c_0 \ldots c_n.\)

8. Given two FAs \(A\) with language \(L_A\) and \(B\) with language \(L_B\), you can use JFLAP's Compare Equivalence operator to determine whether or not \(L_A = L_B\). Can you devise a general method using JFLAP to determine whether \(L_A \subseteq L_B\) (i.e., \(B\) accepts every string \(A\) accepts) using Compare Equivalence? (Yes, part of your instructions may, indeed must, involve editing \(A\) or \(B\). Your method must produce the right answer for any two FAs!)
Chapter 2

NFA to DFA to Minimal DFA

This chapter shows how each NFA can be converted into an equivalent DFA, and how each DFA can be reduced to a DFA with a minimum number of states. Although an NFA might be easier to construct than a DFA, the NFA is usually not efficient to run, as an input string may follow several paths. Converting an NFA into an equivalent DFA ensures that each input string follows only one path. The NFA to DFA algorithm in JFLAP combines similar states reached in the NFA into one state in the DFA. The DFA to minimum state DFA algorithm in JFLAP determines which states in the DFA have similar behavior with respect to incoming and outgoing transitions and combines these states, resulting in a minimal state DFA.

2.1 NFA to DFA

In this section we use JFLAP to show how to convert an NFA into an equivalent DFA. The idea in the conversion is to create states in the DFA that represent multiple states in the NFA. The start state in the DFA represents the start state in the NFA and any states reachable from it on λ. For each new state in the DFA and each letter of the alphabet, one determines all the reachable states from the corresponding NFA states and combines them into a new state for the DFA. This state in the DFA will have a label that will contain the state numbers from the NFA that would be reachable in taking the same path.

2.1.1 Idea for the Conversion

Load the NFA in file ex2.1a as shown in Figure 2.1. We will refer to this example in explaining the steps in converting this NFA to a DFA.

First examine the choices that occur when the NFA processes input. Select Input: Step with Closure and enter the input string “aabbaa” and press return. Clicking Step once shows that processing a can result in arriving in both states q₀ and q₁. Clicking Step six more times shows
that there are always three configurations (one of which is rejected), and results in two paths of acceptance in states \(q_2 \) and \(q_3 \).

The states in the constructed DFA will represent combined states from the NFA. For example, processing an \(a \) resulted in either state \(q_0 \) or \(q_1 \). The DFA would have a state that represents both of these NFA states. Processing \(aabbbaa \) resulted in reaching final states \(q_2 \) and \(q_3 \). The DFA would have a state that represented both of these NFA states. Dismiss the tab for the step run (select File: Dismiss Tab) to go back to the NFA editor.

2.1.2 Conversion Example

Now we will convert the NFA to a DFA (select Convert: Convert to DFA), showing the NFA on the left and the first state of the DFA on the right. The initial state in the DFA is named \(q_0 \) and has the label 0, meaning it represents the \(q_0 \) state from the NFA.

Tip
The NFA may be tiny. Adjust the size in one of two ways: either resize the window, or drag the vertical bar between the NFA and the DFA to the right. In addition, the states in the DFA can be dragged closer to each other, resulting in larger states.

We will now add the state that is reachable from \(q_0 \) on the substring \(a \). Select the Expand Group on Terminal tool \(^8 \). Click and hold the mouse on state \(q_0 \), drag the cursor to where you want the next state, and release it. When prompted by Expand on what terminal?, enter "a" and press return. When prompted by Which group of NFA states will that go to on a?, enter the numbers of the states that are reachable from \(q_0 \) on an \(a \). In this case enter "0,1". (These NFA states could also be entered with a blank separator and with or without the \(q \), such as "q0,q1".) The new state \(q_1 \) appears in Figure 2.2.

Use the Attribute Editor tool you learned about in Chapter 1 to move states around if you don’t like their placement.
2.1. NFA TO DFA

![Diagram of NFA to DFA conversion](image)

Figure 2.2: Expansion of state q_0 on a.

![Diagram of NFA to DFA conversion with state q1](image)

Figure 2.3: Expansion of a and b from state q_1.

Try expanding DFA state q_0 on the terminal b. Since there are no paths from NFA state q_0 on a or b, a warning message is displayed.

Next expand the DFA state q_1 on the terminal a. Note that DFA state q_1 represents both states q_0 and q_1 from the NFA. In the NFA, state q_0 on an a reaches states q_0 and q_1, and state q_1 on an a reaches no state. The union of these results $(0, 1)$ are the states reachable by DFA state q_1, which happens to be the DFA state q_1. Upon the completion of the expansion a transition loop labeled a is added to DFA state q_1. Now expand DFA state q_1 on b. The result of these two expansions is shown in Figure 2.3. Why is DFA state q_2 a final state? If a DFA state represents any NFA state that is a final state, then the substring processed is accepted on some path, and thus the DFA state also must be a final state. NFA state q_2 is a final state, so DFA state q_2 (representing NFA states q_1 and q_2) is a final state.

Expand DFA state q_2 on a. This state is represented by NFA states q_1 and q_2. NFA state q_1 does not have an a transition. NFA state q_2 on an a reaches state q_3 and due to the λ-transition also reaches state q_2.

Note

In using the Expand Group Terminal tool, if the destination state already exists, then drag to the existing state and you will be prompted only for the terminal to expand. Thus, to add a loop transition, just click on the state.

Expand DFA state q_2 on b by clicking on state q_2. You are prompted for the b, but not the states reachable, as that is interpreted as your selected state (itself in this case). The resulting DFA is shown in Figure 2.4.

There is another way to expand a state—the State Expander tool \times. When one selects this tool and clicks on a state, all arcs out of the state are automatically expanded. In Figure 2.5 state q_3 was selected and expanded on both a and b, resulting in a new state q_4.
Is the DFA complete? Select the **Done?** button. If the DFA is not complete, a message indicating items missing is displayed. At this time, one transition is missing.

Expand DFA state q_4 on b by going back to the Expand Group on Terminal tool. Note that q_4 on b goes to the existing DFA state q_2. Click on state q_4, drag to state q_2, and release. You will be prompted for the terminal only.

Is the DFA complete? Select the **Done?** button. The DFA is complete and is exported to a new window. The complete DFA is shown in Figure 2.6. Alternatively, the **Complete** button can be selected at any time during the construction process and the complete DFA will be shown.

The constructed DFA should be equivalent to the NFA. To test this, in the DFA window select **Test : Compare Equivalence**. Select file **ex2.1a**, the name of the NFA, and then press return. The two machines are equivalent.
2.2. DFA TO MINIMAL DFA

2.1.3 Algorithm to Convert NFA M to DFA M'

We describe the algorithm to convert an NFA M to a DFA M'. We first define the closure of a set of states to be those states unioned with all states reachable from these states on a λ-transition.

1. The initial state in M' is the closure of the initial state from M.

2. For each state q' in M' and each terminal x do the following:

 (a) States q and r are states in M. For each state q that is in state q', if q on an x reaches state r on an x, then place state r in new state p'.

 (b) $p' = \text{closure}(p')$

 (c) If another state is equivalent to state p' (represents the same states from M), then set p' to the state already existing.

 (d) Add the transition to M': q' to p' on an x.

3. Each state q' in M' is a final state if it contains a final state from M.

2.2 DFA to Minimal DFA

In this section we show how to convert a DFA to a minimal state DFA. Consider two states p and q from a DFA, each processing a string starting from their state. If there is at least one string w such that states p and q process this string and one accepts w and one rejects w, then these states are distinguishable and cannot be combined. Otherwise, states p and q "act the same way," meaning that they are indistinguishable and can be combined.

2.2.1 Idea for the Conversion

Load the DFA in Figure 2.7 (file ex2.2a). We will refer to this example to explain the steps to convert this DFA to a minimal state DFA.

We would like to examine pairs of states to see if they are distinguishable or not. To do this we will need two separate windows for this DFA. JFLAP lets you open only one copy of each file, so if you try to open the same file again, JFLAP will show just the one window. Instead we will make a duplicate copy of this file by saving it with a different name (select File : Save as and type the filename “ex2.2a-dup”). The current window is now associated with the duplicate file. Load the original file ex2.2a again and it will appear in a separate window (possibly on top of the first window). Move the two windows so you can see both of them.
We will examine the two states q_0 and q_1 to see if they are distinguishable. In one of the windows, change the start state to q_1. Examine the two DFA. Are there any strings that one DFA accepts and the other DFA rejects?

We will examine several strings to see if there is any difference in acceptance and rejection. In both DFA windows, select Input: Multiple Run. In both windows, enter the following strings and any additional ones you’d like to try: “a”, “aab”, “aaaab”, “baa”, “baaa”, and “bba”. Select Run Inputs and examine the results. Do the strings have the same result in both DFAs? There is at least one string in which the result is Accept for one DFA, and Reject in the other DFA. Thus the two states q_0 and q_1 are distinguishable and cannot be combined.

Now we will examine the two states q_2 and q_5 to see if they are distinguishable. Dismiss the tab in both windows to go back to the DFA window. In one window change the start state to q_2, and in the other window change the start state to q_5. Select Input: Multiple Run again. Notice that the strings from the last run still appear in the window. Select Run Inputs to try these same strings. Type in additional strings and try them as well. Are these states distinguishable or indistinguishable? They are distinguishable if there is one string that accepts in one and does not accept in the other. All strings must be tested to determine if the states are indistinguishable. Clearly it is impossible to test all strings, so a reasonable test set should be created.
2.2. DFA TO MINIMAL DFA

2.2.2 Conversion Example

We go through an example of converting a DFA to a minimum state DFA. Remove the previous windows (without saving them) and load the file ex2.2a again, which should have the start state q_0. Select Convert : Minimize DFA. The window splits into two showing the DFA on the left and a tree of states on the right.

We assume that all states are indistinguishable to start with. The root of the tree contains all states. Each time we determine a distinction between states, we split a node in the tree to show this distinction. We continue to split nodes until there are no more splits possible. Each leaf in the final tree represents a group of states that are indistinguishable.

The first step in distinguishing states is to note that a final and a nonfinal state are different. The former accepts λ and the other does not. Thus the tree has already split the set of states into two groups of nonfinal and final states as shown in Figure 2.8.

For additional splits, a terminal will be selected that distinguishes the states in the node. If some of the states in a leaf node on that terminal go to states in one leaf node and other states on that same terminal go to states that are in another leaf node, then the node should be split into two groups of states (i.e., two new leaf nodes).

Let's first examine the leaf node of the nonfinal states ($0, 1, 2, 4, 5, 7$). What happens for each of these states if they process a b? State q_0 on a b goes to state q_2, state q_1 on a b goes to state q_0, and so on. Each of these states on a b goes to a state already in this node. Thus, b does not distinguish these states. In JFLAP, click on the tree node containing the nonfinal states. (Click on the circle, not the label or the word Nonfinal.) The states in this node are highlighted in the DFA. Try to split this node on the terminal b. Select Set Terminal and enter b. A message appears informing you that b does not distinguish these states.

Again select Set Terminal and enter the terminal a. Since a does distinguish these states, the node is split, resulting in two new leaf nodes. The set of states from the split node must be entered into the new leaf nodes, into groups that are indistinguishable. A state number can be entered by
first selecting the leaf node it will be assigned to, and then clicking on the corresponding state in the DFA. Click on the left leaf node and then click on state q_0 in the DFA. The state number 0 should appear in the leaf node, as shown in Figure 2.9.

State q_0 on an a goes to state q_5, which is in the node we are splitting. Note that states q_1, q_4, and q_7 on an a also go to a state in the node we are splitting. Add all of them to the same new leaf node as 0 by clicking on these states in the DFA. The remaining states, q_2 and q_5 on an a, go to a final state, thus distinguishing them. Click on the right new leaf node, and then click on states q_2 and q_5 to enter them into this node, resulting in the tree shown in Figure 2.10. To see if we have done this correctly, click on Check Node. Figure 2.10 shows the resulting tree after splitting this node on a.
We must continually try to split nodes on terminals until there is no further splitting. Each time we split a node, we have created new groups that might now allow another group to be split that could not be split before.

Next we try to split the leaf node with states 0, 1, 4, and 7. Which terminal do you try? In this case either a or b will cause a split. We will try a. Select Set Terminal and enter a. Enter the split groups. State \(q_0 \) on an a goes to state \(q_5 \), which is in leaf node group 2, 5, and states \(q_1 \), \(q_4 \), and \(q_7 \) on an a go to states in the leaf node we are splitting. Let’s enter these states a different way. Select Auto Partition and the states will automatically be entered in as shown in Figure 2.11.

When the tree is complete (as it is now, convince yourself that none of the leaf nodes can be further split), then the only option visible is Finish. Select Finish and the right side of the window is replaced by the new states for the minimum DFA. There is one state for each leaf node from the tree (note the labels on the states correspond to the states from the original DFA), as shown in Figure 2.12. You may want to rearrange the states using the Attribute Editor.

Now add in the missing arcs in the new DFA using the Transition Creator tool. In the original DFA there is an a from state \(q_0 \) to state \(q_5 \), so in the new DFA a transition is added...
from state q_1 (representing the old state q_0) to state q_2 (representing the old state q_5). Selecting **Hint** will add one transition for you and selecting **Complete** will complete the DFA, as shown in Figure 2.13. Selecting **Done?** will export the new DFA to its own window.

The minimum state DFA should be equivalent to the original DFA. Test this using the **Test** : **Compare Equivalence** option.

| Note | When you select a node and select **Set Terminal**, the node you select is split and two children appear. It is possible that the node to be split might need more children; that is, there may be 3 or more distinguished groups split on this terminal. In that case, you must add the additional leaf nodes by selecting the **Add Child** option for each additional child desired. |

2.2.3 Algorithm

We describe the algorithm to convert a DFA M to a minimal state DFA M'.

1. Create the tree of distinguished states as follows:

 (a) The root of the tree contains all states from M

 (b) If there are both final and nonfinal states in M, create two children of the root—one containing all the *nonfinal* states from M and one containing all the *final* states from M.

 (c) For each leaf node N and terminal x, do the following until no node can be split:

 i. If states in N on x go to states in k different leaf nodes, $k > 1$, then create k children for node N and spread the states from N into the k nodes in indistinguishable groups.

2. Create the new DFA as follows:

 (a) Each leaf node in the tree represents a state in the DFA M' with a label equal to the states from M in the node. The start state in M' is the state that contains the start
state from \(M \) in its label. A state in \(M' \) is a final state if it contains a final state from \(M \) in its label.

(b) For each arc in \(M \) from states \(p \) to \(q \), add an arc in \(M' \) from the state that has \(p \) in its label to the state that has \(q \) in its label. Do not add any duplicate arcs.

2.3 Exercises

1. Convert the NFAs in the given files into DFAs.

 (a) ex2-nfa2dfa-a
 (b) ex2-nfa2dfa-b
 (c) ex2-nfa2dfa-c
 (d) ex2-nfa2dfa-d
 (e) ex2-nfa2dfa-e
 (f) ex2-nfa2dfa-f

2. Consider the language \(L = \{ w \in \Sigma^* \mid w \) does not have the substring \(aabb \} \), \(\Sigma = \{ a, b \} \).

 Load the DFA in file ex2.3a shown in Figure 2.14. This DFA recognizes \(L \).

 Also load the file ex2.3b. It is the NFA shown in Figure 2.15 that attempts to recognize \(L \), but fails.

 Give an input string that shows why this NFA is not equivalent to this DFA.
3. Consider the DFA in file ex2-dfa2nfa. This DFA was converted from an NFA and the labels show the states of the original NFA. That NFA did not have any λ-transitions. Create the original NFA.

4. Convert the DFAs in the given files into minimal state DFAs.

 (a) ex2-dfa2mindfa-a
 (b) ex2-dfa2mindfa-b
 (c) ex2-dfa2mindfa-c
 (d) ex2-dfa2mindfa-d
 (e) ex2-dfa2mindfa-e

5. Consider the DFA in file ex2.3c. Explain why it is not a minimal DFA.

6. Consider the DFA in file ex2-dfa2mindfa-test. States q_2 and q_8 are distinguishable. Make a copy of this file and make q_2 the start state in one and q_8 the start state in the other. Give five input strings that are accepted by both of these DFAs and one input string that distinguishes the two DFAs, thus distinguishing states q_2 and q_8 in the original DFA. You can confirm your answer by running the DFAs on the input strings.