Chapter 3

COGNITIVE ASPECTS
Overview

• What is cognition?

• What are users good and bad at?

• Describe how cognition has been applied to interaction design

• Explain what are Mental Models

• Cover relevant theories of cognition
Why do we need to understand users?

• Interacting with technology is cognitive

• Need to take into account cognitive processes involved and cognitive limitations of users

• Provides knowledge about what users can and cannot be expected to do

• Identifies and explains the nature and causes of problems users encounter

• Supply theories, modelling tools, guidance and methods that can lead to the design of better interactive products
Cognitive processes

• Attention
• Perception
• Memory
• Learning
• Reading, speaking and listening
• Problem-solving, planning, reasoning and decision-making
Attention

• Selecting things to concentrate on at a point in time from the mass of stimuli around us

• Allows us to focus on information that is relevant to what we are doing

• Involves audio and/or visual senses

• Focussed and divided attention enables us to be selective in terms of the mass of competing stimuli but limits our ability to keep track of all events

• Information at the interface should be structured to capture users’ attention, e.g. use perceptual boundaries (windows), colour, reverse video, sound and flashing lights
Activity: Find the price for a double room at the Quality Inn in Pennsylvania

Pennsylvania
Bedford Motel/Hotel: Crinaline Courts
 (814) 623-9511 S: $118 D: $120
Bedford Motel/Hotel: Holiday Inn
 (814) 623-9006 S: $129 D: $136
Bedford Motel/Hotel: Midway
 (814) 623-8107 S: $121 D: $126
Bedford Motel/Hotel: Penn Manor
 (814) 623-8177 S: $119 D: $125
Bedford Motel/Hotel: Quality Inn
 (814) 623-5189 S: $123 D: $128
Bedford Motel/Hotel: Terrace
 (814) 623-5111 S: $122 D: $124
Bradley Motel/Hotel: De Soto
 (814) 362-3567 S: $120 D: $124
Bradley Motel/Hotel: Holiday House
 (814) 362-4511 S: $122 D: $125
Bradley Motel/Hotel: Holiday Inn
 (814) 362-4501 S: $132 D: $140
Breezewood Motel/Hotel: Best Western Plaza
 (814) 735-4352 S: $120 D: $127
Breezewood Motel/Hotel: Motel 70
 (814) 735-4385 S: $116 D: $118
Activity: Find the price of a double room at the Holiday Inn in Columbia

<table>
<thead>
<tr>
<th>City</th>
<th>Motel/Hotel</th>
<th>Area code</th>
<th>Phone</th>
<th>Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Single</td>
</tr>
<tr>
<td>Charleston</td>
<td>Best Western</td>
<td>803</td>
<td>747-0961</td>
<td>$126 $130</td>
</tr>
<tr>
<td>Charleston</td>
<td>Days Inn</td>
<td>803</td>
<td>881-1000</td>
<td>$118 $124</td>
</tr>
<tr>
<td>Charleston</td>
<td>Holiday Inn N</td>
<td>803</td>
<td>744-1621</td>
<td>$136 $146</td>
</tr>
<tr>
<td>Charleston</td>
<td>Holiday Inn SW</td>
<td>803</td>
<td>556-7100</td>
<td>$133 $147</td>
</tr>
<tr>
<td>Charleston</td>
<td>Howard Johnsons</td>
<td>803</td>
<td>524-4148</td>
<td>$131 $136</td>
</tr>
<tr>
<td>Charleston</td>
<td>Ramada Inn</td>
<td>803</td>
<td>774-8281</td>
<td>$133 $140</td>
</tr>
<tr>
<td>Charleston</td>
<td>Sheraton Inn</td>
<td>803</td>
<td>744-2401</td>
<td>$134 $142</td>
</tr>
<tr>
<td>Columbia</td>
<td>Best Western</td>
<td>803</td>
<td>796-9400</td>
<td>$129 $134</td>
</tr>
<tr>
<td>Columbia</td>
<td>Carolina Inn</td>
<td>803</td>
<td>799-8200</td>
<td>$142 $148</td>
</tr>
<tr>
<td>Columbia</td>
<td>Days Inn</td>
<td>803</td>
<td>736-0000</td>
<td>$123 $127</td>
</tr>
<tr>
<td>Columbia</td>
<td>Holiday Inn NW</td>
<td>803</td>
<td>794-9440</td>
<td>$132 $139</td>
</tr>
<tr>
<td>Columbia</td>
<td>Howard Johnsons</td>
<td>803</td>
<td>772-7200</td>
<td>$125 $127</td>
</tr>
<tr>
<td>Columbia</td>
<td>Quality Inn</td>
<td>803</td>
<td>772-0270</td>
<td>$134 $141</td>
</tr>
<tr>
<td>Columbia</td>
<td>Ramada Inn</td>
<td>803</td>
<td>796-2700</td>
<td>$136 $144</td>
</tr>
<tr>
<td>Columbia</td>
<td>Vagabond Inn</td>
<td>803</td>
<td>796-6240</td>
<td>$127 $130</td>
</tr>
</tbody>
</table>
Activity

• Tullis (1987) found that the two screens produced quite different results
 – 1st screen - took an average of 5.5 seconds to search
 – 2nd screen - took 3.2 seconds to search

• Why, since both displays have the same density of information (31%)?

• Spacing
 – In the 1st screen the information is bunched up together, making it hard to search
 – In the 2nd screen the characters are grouped into vertical categories of information making it easier
Multitasking and attention

• Is it possible to perform multiple tasks without one or more of them being detrimentally affected?

• Ophir et al (2009) compared heavy vs light multi-taskers
 – heavy were more prone to being distracted than those who infrequently multitask
 – heavy multi-taskers are easily distracted and find it difficult to filter irrelevant information
Design implications for attention

• Make information salient when it needs attending to

• Use techniques that make things stand out like color, ordering, spacing, underlining, sequencing and animation

• Avoid cluttering the interface with too much information

• Search engines and form fill-ins that have simple and clean interfaces are easier to use
Perception

• How information is acquired from the world and transformed into experiences

• Obvious implication is to design representations that are readily perceivable, e.g.
 – Text should be legible
 – Icons should be easy to distinguish and read
Is color contrast good? Find Italian

<table>
<thead>
<tr>
<th>Black Hills Forest</th>
<th>Peters Landing</th>
<th>Jefferson Farms</th>
<th>Devlin Hall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheyenne River</td>
<td>Public Health</td>
<td>Psychophysics</td>
<td>Positions</td>
</tr>
<tr>
<td>Social Science</td>
<td>San Bernardino</td>
<td>Political Science</td>
<td>Hubbard Hall</td>
</tr>
<tr>
<td>South San Jose</td>
<td>Moreno Valley</td>
<td>Game Schedule</td>
<td>Fernadino Beach</td>
</tr>
<tr>
<td>Badlands Park</td>
<td>Altamonte Springs</td>
<td>South Addision</td>
<td>Council Bluffs</td>
</tr>
<tr>
<td>Juvenile Justice</td>
<td>Peach Tree City</td>
<td>Cherry Hills Village</td>
<td>Classical Lit</td>
</tr>
<tr>
<td>Results and Stats</td>
<td>Highland Park</td>
<td>Creative Writing</td>
<td>Sociology</td>
</tr>
<tr>
<td>Thousand Oaks</td>
<td>Manchesney Park</td>
<td>Lake Havasu City</td>
<td>Greek</td>
</tr>
<tr>
<td>Promotions</td>
<td>Vallecito Mts.</td>
<td>Engineering Bldg</td>
<td>Wallace Hall</td>
</tr>
<tr>
<td>North Palermo</td>
<td>Rock Falls</td>
<td>Sports Studies</td>
<td>Concert Tickets</td>
</tr>
<tr>
<td>Credit Union</td>
<td>Freeport</td>
<td>Lakewood Village</td>
<td>Public Radio FM</td>
</tr>
<tr>
<td>Wilner Hall</td>
<td>Slaughter Beach</td>
<td>Rock Island</td>
<td>Children's Museum</td>
</tr>
<tr>
<td>Performing Arts</td>
<td>Rocky Mountains</td>
<td>Deerfield Beach</td>
<td>Writing Center</td>
</tr>
<tr>
<td>Italian</td>
<td>Latin</td>
<td>Arlington Hill</td>
<td>Theater Auditions</td>
</tr>
<tr>
<td>Coaches</td>
<td>Pleasant Hills</td>
<td>Preview Game</td>
<td>Delaware City</td>
</tr>
<tr>
<td>McKees Rocks</td>
<td>Observatory</td>
<td>Richland Hills</td>
<td>Scholarships</td>
</tr>
<tr>
<td>Glenwood Springs</td>
<td>Public Affairs</td>
<td>Experts Guide</td>
<td>Hendricksville</td>
</tr>
<tr>
<td>Urban Affairs</td>
<td>Heskett Center</td>
<td>Neff Hall</td>
<td>Knights Landing</td>
</tr>
<tr>
<td>McLeansboro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental Links</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emory Lindquist</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinton Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Luis Obispo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McLeansboro</td>
<td>Brunswick</td>
<td>Grand Wash Cliffs</td>
<td>Modern Literature</td>
</tr>
<tr>
<td>Experimental Links</td>
<td>East Millinocket</td>
<td>Indian Well Valley</td>
<td>Studio Arts</td>
</tr>
<tr>
<td>Graduation</td>
<td>Women's Studies</td>
<td>Online Courses</td>
<td>Hughes Complex</td>
</tr>
<tr>
<td>Emory Lindquist</td>
<td>Vacant</td>
<td>Lindquist Hall</td>
<td>Cumberland Flats</td>
</tr>
<tr>
<td>Clinton Hall</td>
<td>News Theatre</td>
<td>Fisk Hall</td>
<td>Central Village</td>
</tr>
<tr>
<td>San Luis Obispo</td>
<td>Candlewood Isle</td>
<td>Los Padres Forest</td>
<td>Hoffman Estates</td>
</tr>
</tbody>
</table>
Are borders and white space better?

Find french
Activity

• Weller (2004) found people took less time to locate items for information that was grouped
 – using a border (2nd screen) compared with using color contrast (1st screen)

• Some argue that too much white space on web pages is detrimental to visual search
 – Makes it hard to find information

• Do you agree?
Which is easiest to read and why?

What is the time?

What is the time?

What is the time?

What is the time?
Design implications

- Icons should enable users to readily distinguish their meaning.
- Bordering and spacing are effective visual ways of grouping information.
- Sounds should be audible and distinguishable.
- Speech output should enable users to distinguish between the set of spoken words.
- Text should be legible and distinguishable from the background.
- Tactile feedback should allow users to recognize and distinguish different meanings.
Memory

• Involves first encoding and then retrieving knowledge.

• We don’t remember everything - involves filtering and processing what is attended to

• Context is important in affecting our memory (i.e. where, when)

• We recognize things much better than being able to recall things

• we remember less about objects we have photographed than when we observe them with the naked eye (Henkel, 2014)
Processing in memory

• Encoding is first stage of memory
 – determines which information is attended to in the environment and how it is interpreted

• The more attention paid to something…

• The more it is processed in terms of thinking about it and comparing it with other knowledge…

• The more likely it is to be remembered
 – e.g. when learning about HCI, it is much better to reflect upon it, carry out exercises, have discussions with others about it, and write notes than just passively read a book, listen to a lecture or watch a video about it
Three Types of Memory

- Sensory Memory
- Short-Term (Working) Memory
- Long-Term Memory

Steps:
- Attention
- Filter
- Rehearsal
- Filter
sensory memory

• Buffers for stimuli received through senses
 – iconic memory: visual stimuli
 – echoic memory: aural stimuli
 – haptic memory: tactile stimuli

• Examples
 – “sparkler” trail
 – stereo sound

• Continuously overwritten
Short-term memory (STM)

- Scratch-pad for temporary recall
 - rapid access ~ 70ms
 - rapid decay ~ 200ms
 - limited capacity - 7± 2 chunks
Working Memory Duration

Peterson and Peterson (1959).
Examples

212348278493202

0121 414 2626

HEC ATR ANU PTH ETR EET
Long-term memory (LTM)

• Repository for all our knowledge
 – slow access ~ 1/10 second
 – slow decay, if any
 – huge or unlimited capacity
Long-Term Memory

• Consists of several distinct subtypes.

• Implicit or *procedural memory* holds knowledge for skills such as riding a bicycle. It is demonstrated by doing and occurs without conscious recall.

• Explicit or *declarative memory* holds memory for facts or events. It is demonstrated by saying and occurs with conscious recall.
Declarative Memory

• Declarative long-term memory consists of two types.

• *Semantic memory* contains factual knowledge and can be organized hierarchically. Example: George Washington was the first president of the United States.

• *Episodic memory* contains personally experienced events and is organized temporally or spatially. Example: What you did on your last birthday.
Semantic Memory Duration

Context is important

- Context affects the extent to which information can be subsequently retrieved

- Sometimes it can be difficult for people to recall information that was encoded in a different context:

 - “You are on a train and someone comes up to you and says hello. You don’t recognize him for a few moments but then realize it is one of your neighbors. You are only used to seeing your neighbor in the hallway of your apartment block and seeing him out of context makes him difficult to recognize initially”
Activity

- Try to remember the dates of your grandparents’ birthday
- Try to remember the cover of the last two DVDs you bought or rented
- Which was easiest? Why?
- People are very good at remembering visual cues about things
 - e.g. the color of items, the location of objects and marks on an object
- They find it more difficult to learn and remember arbitrary material
 - e.g. birthdays and phone numbers
Recognition versus recall

- Command-based interfaces require users to recall from memory a name from a possible set of 100s.

- GUIs provide MP3 players visually-based options that users need only browse through until they recognize one.

- Web browsers, etc., provide lists of visited URLs, song titles etc., that support recognition memory.
The problem with the classic ‘7±2’

- George Miller’s (1956) theory of how much information people can remember
- People’s immediate memory capacity is very limited
- Many designers think this is useful finding for interaction design
- But…
What some designers get up to…

• Present only 7 options on a menu
• Display only 7 icons on a tool bar
• Have no more than 7 bullets in a list
• Place only 7 items on a pull down menu
• Place only 7 tabs on the top of a website page

– But this is wrong? Why?
Why?

• Inappropriate application of the theory

• People can scan lists of bullets, tabs, menu items for the one they want

• They don’t have to recall them from memory having only briefly heard or seen them

• Sometimes a small number of items is good

• But depends on task and available screen estate
Digital content management

- Is a growing problem for many users
 - vast numbers of documents, images, music files, video clips, emails, attachments, bookmarks, etc.,
 - where and how to save them all, then remembering what they were called and where to find them again
 - naming most common means of encoding them
 - but can be difficult to remember, especially when have 1000s and 1000s
 - How might such a process be facilitated taking into account people’s memory abilities?
Digital content management

• Memory involves 2 processes
 – recall-directed
 – recognition-based scanning

• File management systems should be designed to optimize both kinds of memory processes
 – e.g. Search box and history list

• Help users encode files in richer ways
 – Provide them with ways of saving files using colour, flagging, image, flexible text, time stamping, etc.
Is Apple’s Spotlight search tool any good?

Figure 3.3 Apple’s Spotlight search tool
Digital Forgetting

• When might you wish to forget something that is online?
 – When you break up with a partner
 – Emotionally painful to be reminded of them through shared photos, social media, etc.

• Sas and Whittaker (2013) suggest new ways of harvesting and deleting digital content
 – e.g. making photos of ex into an abstract collage
 – helps with closure
Memory aids

• SenseCam developed by Microsoft Research Labs (now Autographer)

• a wearable device that intermittently takes photos without any user intervention while worn

• digital images taken are stored and revisited using special software

• Has been found to improve people’s memory, suffering from Alzheimers
SenseCam

Figure 3.5 The SenseCam device and a digital image taken with it

Source: ©Microsoft Research Cambridge.
Design implications

• Don’t overload users’ memories with complicated procedures for carrying out tasks

• Design interfaces that promote recognition rather than recall

• Provide users with various ways of encoding information to help them remember
 – e.g. categories, color, flagging, time stamping
Learning

• How to learn to use a computer-based application

• Using a computer-based application or YouTube video to understand a given topic

• People find it hard to learn by following instructions in a manual
 • prefer to learn by doing
Cognitive prosthetic devices

- We rely more and more on the internet and smartphones to look things up
- Cognitive resource cf. extended mind
- Expecting to have internet access reduces the need and extent to which we remember
- Also enhances our memory for knowing where to find it online (Sparrow et al., 2011)
- What are implications for designing technologies to support *how* people will learn, and *what* they learn?
Design implications

• Design interfaces that encourage exploration

• Design interfaces that constrain and guide learners

• Dynamically linking concepts and representations can facilitate the learning of complex material
Reading, speaking, and listening

• The ease with which people can read, listen, or speak differs
 – Many prefer listening to reading
 – Reading can be quicker than speaking or listening
 – Listening requires less cognitive effort than reading or speaking
 – Dyslexics have difficulties understanding and recognizing written words
Applications

• Speech-recognition systems allow users to interact with them by asking questions
 – e.g. Google Voice, Siri

• Speech-output systems use artificially generated speech
 – e.g. written-text-to-speech systems for the blind

• Natural-language systems enable users to type in questions and give text-based responses
 – e.g. Ask search engine
Design implications

• Speech-based menus and instructions should be short

• Accentuate the intonation of artificially generated speech voices
 – they are harder to understand than human voices

• Provide opportunities for making text large on a screen
Problem-solving, planning, reasoning and decision-making

• All involves reflective cognition
 – e.g. thinking about what to do, what the options are, and the consequences

• Often involves conscious processes, discussion with others (or oneself), and the use of artefacts
 – e.g. maps, books, pen and paper

• May involve working through different scenarios and deciding which is best option
Design implications

• Provide additional information/functions for users who wish to understand more about how to carry out an activity more effectively

• Use simple computational aids to support rapid decision-making and planning for users on the move
Dilemma

• The app mentality developing in the psyche of the younger generation is making it worse for them to make their own decisions because they are becoming risk averse (Gardner and Davis, 2013)

• Relying on a multitude of apps means that they are becoming increasingly more anxious about making decisions by themselves

• Do you agree? Can you think of an example?
Mental models

• Users develop an understanding of a system through learning about and using it

• Knowledge is sometimes described as a mental model:
 – How to use the system (what to do next)
 – What to do with unfamiliar systems or unexpected situations (how the system works)

• People make inferences using mental models of how to carry out tasks
Mental models

• Craik (1943) described mental models as:
 – internal constructions of some aspect of the external world enabling predictions to be made

• Involves unconscious and conscious processes
 – images and analogies are activated

• Deep versus shallow models
 – e.g. how to drive a car and how it works
Everyday reasoning and mental models

(a) You arrive home on a cold winter’s night to a cold house. How do you get the house to warm up as quickly as possible? Set the thermostat to be at its highest or to the desired temperature?

(b) You arrive home starving hungry. You look in the fridge and find all that is left is an uncooked pizza. You have an electric oven. Do you warm it up to 375 degrees first and then put it in (as specified by the instructions) or turn the oven up higher to try to warm it up quicker?
Heating up a room or oven that is thermostat-controlled

- Many people have erroneous mental models (Kempton, 1996)

- Why?

 - General valve theory, where ‘more is more’ principle is generalised to different settings (e.g. gas pedal, gas cooker, tap, radio volume)

 - Thermostats is actually based on model of on-off switch model
Heating up a room or oven that is thermostat-controlled

- Same is often true for understanding how interactive devices and computers work:
 - poor, often incomplete, easily confusible, based on inappropriate analogies and superstition (Norman, 1983)
 - e.g. elevators and pedestrian crossings - lot of people hit the button at least twice
 - Why? Think it will make the lights change faster or ensure the elevator arrives!
Exercise: ATMs

• Write down how an ATM works
 – How much money are you allowed to take out?
 – What denominations?
 – If you went to another machine and tried the same what would happen?
 – What information is on the strip on your card? How is this used?
 – What happens if you enter the wrong number?
 – Why are there pauses between the steps of a transaction? What happens if you try to type during them?
 – Why does the card stay inside the machine?
 – Do you count the money? Why?
How did you fare?

• Your mental model
 – How accurate?
 – How similar?
 – How shallow?

• Payne (1991) did a similar study and found that people frequently resort to analogies to explain how they work.

• People’s accounts greatly varied and were often ad hoc.
Design Implications: Transparency

• Provide useful feedback
• Provide easy-to-understand, intuitive interactions
• Provide clear instructions
• Provide on-line help and tutorials
• Offer context-sensitive guidance to users at multiple levels of experience
Gulfs of execution and evaluation

• The ‘gulfs’ explicate the gaps that exist between the user and the interface

• The gulf of execution
 – the distance from the user to the physical system

• The gulf of evaluation
 – the distance from the physical system to the user

• Bridging the gulfs can reduce cognitive effort required to perform tasks

Norman, 1986; Hutchins et al, 1986
Bridging the gulfs

Figure 3.7 Bridging the gulfs of execution and evaluation

Information processing

- Conceptualizes human performance in metaphorical terms of information processing stages

Figure 3.8 Human information processing model
Model Human processor (Card et al, 1983)

• Models the information processes of a user interacting with a computer

• Predicts which cognitive processes are involved when a user interacts with a computer

• Enables calculations to be made of how long a user will take to carry out a task
The human processor model

![Diagram of the human processor model with details on memory and processing components.]
Limitations

• Based on modelling mental activities that happen exclusively inside the head

• Do not adequately account for how people interact with computers and other devices in real world
Knowledge

Using

Information

Organizing

Data

Sampling

The Real World
Distributed cognition

• Concerned with the nature of cognitive phenomena across individuals, artefacts, and internal and external representations (Hutchins, 1995)

• Describes these in terms of propagation across representational state

• Information is transformed through different media (computers, displays, paper, heads)
How it differs from information processing

Figure 3.10 Comparison of traditional and distributed cognition approaches
Figure 3.11 A cognitive system in which information is propagated through different media

What’s involved

• The distributed problem-solving that takes place
• The role of verbal and non-verbal behavior
• The various coordinating mechanisms that are used (e.g. rules, procedures)
• The communication that takes place as the collaborative activity progresses
• How knowledge is shared and accessed
External cognition

• Concerned with explaining how we interact with external representations (e.g. maps, notes, diagrams)

• What are the cognitive benefits and what processes involved

• How they extend our cognition

• What computer-based representations can we develop to help even more?
Externalizing to reduce memory load

• Diaries, reminders, calendars, notes, shopping lists, to-do lists
 – written to remind us of what to do

• Post-its, piles, marked emails
 – where placed indicates priority of what to do

• External representations:
 – Remind us that we need to do something (e.g. to buy something for mother’s day)
 – Remind us of what to do (e.g. buy a card)
 – Remind us when to do something (e.g. send a card by a certain date)
Computational offloading

• When a tool is used in conjunction with an external representation to carry out a computation (e.g. pen and paper)

• Try doing the two sums below (a) in your head, (b) on a piece of paper and c) with a calculator.
 – 234 \times 456 = ??
 – CCXXXIII \times CCCCCXXXXXVI = ???

• Which is easiest and why? Both are identical sums
Annotation and cognitive tracing

- Annotation involves modifying existing representations through making marks
 - e.g. crossing off, ticking, underlining

- Cognitive tracing involves externally manipulating items into different orders or structures
 - e.g. playing Scrabble, playing cards
Design implication

- Provide external representations at the interface that reduce memory load and facilitate computational offloading
 - e.g. Information visualizations have been designed to allow people to make sense and rapid decisions about masses of data
Summary

- Cognition involves several processes including attention, memory, perception and learning

- The way an interface is designed can greatly affect how well users can perceive, attend, learn and remember how to do their tasks

- Theoretical frameworks, such as mental models and external cognition, provide ways of understanding how and why people interact with products

- This can lead to thinking about how to design better products