Chapter 11

DESIGN, PROTOTYPING and CONSTRUCTION
Overview

• Prototyping
• Conceptual design
• Concrete design
• Using scenarios
• Generating prototypes
• Construction
Prototyping

• What is a prototype?
• Why prototype?
• Different kinds of prototyping
 - Low fidelity
 - High fidelity
• Compromises in prototyping
 - Vertical
 - Horizontal
• Final product needs to be engineered
What is a prototype?

In other design fields a prototype is a small-scale model:

• a miniature car
• a miniature building or town
• the examples here come from a 3D printer

Figure 11.1 (a) Color output from a 3D printer: all the gears and rods in this model were ‘printed’ in one pass from bottom to top, and when one gear is turned, the others turn too.

Source: (a) The Computer Language Company, Inc., courtesy of Alan Freedman
(c) A teddy bear ‘printed’ from a wireframe design http://www.disneyresearch.com/project/printed-teddy-bears/
(c) Courtesy of Scott Hudson, Human–Computer Interaction Institute, Carnegie Mel·lon University.
What is a prototype?

In interaction design it can be (among other things):

• a series of screen sketches
• a storyboard, i.e. a cartoon-like series of scenes
• a Powerpoint slide show
• a video simulating the use of a system
• a lump of wood (e.g. PalmPilot)
• a cardboard mock-up
• a piece of software with limited functionality written in the target language or in another language
Why prototype?

• Evaluation and feedback are central to interaction design

• Stakeholders can see, hold, interact with a prototype more easily than a document or a drawing

• Team members can communicate effectively

• You can test out ideas for yourself

• It encourages reflection: very important aspect of design

• Prototypes answer questions, and support designers in choosing between alternatives
Filtering dimensions of prototyping

<table>
<thead>
<tr>
<th>Filtering dimension</th>
<th>Example variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>size; color; shape; margin; form; weight; texture; proportion; hardness; transparency; gradation; haptic; sound</td>
</tr>
<tr>
<td>Data</td>
<td>data size; data type (e.g., number; string; media); data use; privacy type; hierarchy; organization</td>
</tr>
<tr>
<td>Functionality</td>
<td>system function; users’ functionality need</td>
</tr>
<tr>
<td>Interactivity</td>
<td>input behavior; output behavior; feedback behavior; information behavior</td>
</tr>
<tr>
<td>Spatial structure</td>
<td>arrangement of interface or information elements; relationship among interface or information elements – which can be either two-or three-dimensional, intangible or tangible, or mixed</td>
</tr>
</tbody>
</table>
Manifestation dimensions of prototyping

<table>
<thead>
<tr>
<th>Manifestation dimension</th>
<th>Definition</th>
<th>Example variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Medium (either visible or invisible) used to form a prototype</td>
<td>Physical media, e.g. paper, wood, and plastic; tools for manipulating physical matters, e.g. knife, scissors, pen, and sandpaper; computational prototyping tools, e.g. Macromedia Flash and Visual Basic; physical computing tools, e.g. Phidgets and Basic Stamps; available existing artifacts, e.g. a beeper to simulate a heart attack</td>
</tr>
<tr>
<td>Resolution</td>
<td>Level of detail or sophistication of what is manifested (corresponding to fidelity)</td>
<td>Accuracy of performance, e.g. feedback time responding to an input by a user (giving user feedback in a paper prototype is slower than in a computer-based one); appearance details; interactivity details; realistic versus faked data</td>
</tr>
<tr>
<td>Scope</td>
<td>Range of what is covered to be manifested</td>
<td>Level of contextualization, e.g. website color scheme testing with only color scheme charts or color schemes placed in a website layout structure; book search navigation usability testing with only the book search related interface or the whole navigation interface</td>
</tr>
</tbody>
</table>

Table 11.2 The definition and variables of each manifestation dimension
What to prototype?

• Technical issues

• Work flow, task design

• Screen layouts and information display

• Difficult, controversial, critical areas
<table>
<thead>
<tr>
<th>Type</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-fidelity</td>
<td>Lower development cost</td>
<td>Limited error checking</td>
</tr>
<tr>
<td>prototype</td>
<td>Evaluates multiple design concepts</td>
<td>Poor detailed specification to code to</td>
</tr>
<tr>
<td></td>
<td>Useless communication device</td>
<td>Facilitator-driven</td>
</tr>
<tr>
<td></td>
<td>Addresses screen layout issues</td>
<td>Limited utility after requirements established</td>
</tr>
<tr>
<td></td>
<td>Useful for identifying market requirements</td>
<td>Limited usefulness for usability tests</td>
</tr>
<tr>
<td></td>
<td>Proof of concept</td>
<td>Navigational and flow limitations</td>
</tr>
<tr>
<td>High-fidelity</td>
<td>Complete functionality</td>
<td>More resource-intensive to develop</td>
</tr>
<tr>
<td>prototype</td>
<td>Fully interactive</td>
<td>Time-consuming to create</td>
</tr>
<tr>
<td></td>
<td>User-driven</td>
<td>Inefficient for proof-of-concept designs</td>
</tr>
<tr>
<td></td>
<td>Clearly defines navigational scheme</td>
<td>Not effective for requirements gathering</td>
</tr>
<tr>
<td></td>
<td>Use for exploration and test</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Look and feel of final product</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Serves as a living specification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marketing and sales tool</td>
<td></td>
</tr>
</tbody>
</table>

Table 11.3 Advantages and disadvantages of low- and high-fidelity prototypes
Low-fidelity Prototyping

• Uses a medium which is unlike the final medium, e.g. paper, cardboard

• Is quick, cheap and easily changed

• Examples:
 – sketches of screens, task sequences, etc
 – ‘post-it’ notes
 – storyboards
 – ‘Wizard-of-Oz’
Storyboards

• Often used with scenarios or use cases, bringing more detail, and a chance to role play

• It is a series of sketches showing how a user might progress through a task using the device

• Used early in design
Sketching

- Sketching is important to low-fidelity prototyping.

- Don’t be inhibited about drawing ability. Practice simple symbols.

Figure 11.5 A storyboard depicting how to fill a car with gas
Card-based prototypes

- Index cards (3 X 5 inches)
- Each card represents one screen or part of screen
- Often used in website development
‘Wizard-of-Oz’ prototyping

- The user thinks they are interacting with a computer, but a developer is responding to output rather than the system.

- Usually done early in design to understand users’ expectations

- What is ‘wrong’ with this approach?
High-fidelity prototyping

- Uses materials that you would expect to be in the final product
- Prototype looks more like the final system than a low-fidelity version
- High-fidelity prototypes can be developed by integrating existing hardware and software components
- Danger that users think they have a complete system........see compromises
Compromises in prototyping

• All prototypes involve compromises

• For software-based prototyping maybe there is a slow response? sketchy icons? limited functionality?

• Two common types of compromise
 • horizontal: provide a wide range of functions, but with little detail
 • vertical: provide a lot of detail for only a few functions

• Compromises in prototypes mustn't be ignored. Product needs engineering
Conceptual design

• Transform user requirements/needs into a conceptual model

• A conceptual model is an outline of what people can do with a product and what concepts are needed to understand and interact with it

• Mood board may be used to capture feel

• Consider alternatives: prototyping helps
Is there a suitable metaphor?

• Interface metaphors combine familiar knowledge with new knowledge in a way that will help the user understand the product.

• Three steps: understand functionality, identify potential problem areas, generate metaphors

• Evaluate metaphors:

 How much structure does it provide?
 How much is relevant to the problem?
 Is it easy to represent?
 Will the audience understand it?
 How extensible is it?
Considering interaction and interface types

• Which interaction type?
 – How the user invokes actions
 – Instructing, conversing, manipulating or exploring

• Do different interface types provide insight?
 – shareable, tangible, augmented reality, etc.
Expanding the initial conceptual model

- What functions will the product perform?
 - What will the product do and what will the human do (task allocation)?

- How are the functions related to each other?
 - Sequential or parallel?
 - Categorizations, e.g. all actions related to privacy on a smartphone

- What information is needed?
 - What data is required to perform the task?
 - How is this data to be transformed by the system?
Concrete design

• Many aspects to concrete design
 – Color, icons, buttons, interaction devices etc.

• User characteristics and context
 – Accessibility, cross-cultural design

• Cultural website guidelines

successful products “are … bundles of social solutions. Inventors succeed in a particular culture because they understand the values, institutional arrangements, and economic notions of that culture.”
Using scenarios

• Express proposed or imagined situations

• Used throughout design in various ways
 – as a basis for overall design
 – scripts for user evaluation of prototypes
 – concrete examples of tasks
 – as a means of co-operation within design teams and across professional boundaries

• Plus and minus scenarios to explore extreme cases
Generate storyboard from scenario

People

Give
Receive
Transfer

Digital devices
happy
Upset
Surprise
Sound
Light

Figure 11.4 Some simple sketches for low-fidelity prototyping
TRAVEL INFORMATION

- Visa requirements
- Vaccination Recommendations
- What to pack before you go

VISA REQUIREMENTS

<table>
<thead>
<tr>
<th>Field</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination Country</td>
<td>Enter below</td>
</tr>
<tr>
<td>Traveler's Nationality</td>
<td>Enter below</td>
</tr>
</tbody>
</table>

Find Requirements

VISA REQUIREMENTS FOR (COUNTRY)

- [Print]

www.id-book.com
Generate card-based prototype from use case

Figure 11.6 Prototype developed for cell phone user interface
Explore the user’s experience

• Use personas, card-based prototypes or stickies to model the user experience

• Visual representation called:
 – design map
 – customer/user journey map
 – experience map

• Two common representations
 – wheel
 – timeline
An experience map drawn as a wheel

(a)

Figure 11.19 (a) An experience map using a wheel representation. (b) An example timeline design map illustrating how to capture different issues.

Source: (a) http://www.ux-lady.com/experience-maps-user-journey-and-more-exp-map-layout/
An experience map drawn as a timeline

(b)

Figure 11.19 Continued
Construction: physical computing

• Build and code prototypes using electronics

• Toolkits available include
 – Arduino
 – LilyPad (for fabrics)
 – Senseboard
 – MaKey MaKey

• Designed for use by wide range of people
Physical computing kits

Figure 11.22 The Arduino board

Source: Courtesy of Nicolai Marquardt
Physical computing kits

Figure 11.24 The MaKey MaKey toolkit
Physical computing kits

Figure 11.25 A group of retired friends playing with a MaKey MaKey toolkit
Construction: SDKs

- **Software Development Kits**
 - programming tools and components to develop for a specific platform, e.g. iOS

- **Includes:** IDE, documentation, drivers, sample code, application programming interfaces (APIs)

- **Makes development much easier**

- **Microsoft’s Kinect SDK has been used in research**
Summary

- Different kinds of prototyping are used for different purposes and at different stages
- Prototypes answer questions
- The final product must be engineered appropriately
- Two aspects of design: conceptual and concrete
- To generate conceptual design, consider interface metaphors, interaction types and interface types
- Storyboards can be generated from scenarios
- Card-based prototypes can be generated from use cases
- Physical computing kits and SDKs facilitate transition from design to construction